Cherenkov Telescope Array
-A Sensitive Probe of the Extreme Universe-

_ Elina Lindfors, Finnish Center for Astronomy with ESO, on behalf of the CTA consortium
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Hadron event

Gamma event

Hadrons (background) dominate over
gammas (signal ). They must be rejected
statistically in the analysis

Works excellgat = 100 GeV
but challenging < 100 GeV
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AT 2 10x wore sensitive thaw current Lnstrioments
+ meh wider energy coverage and field of view
substantially better angular and energy resolution

50-100 telescopes of three sizes

Desigin: 2008-12, Prototyplng: 2011-14, Construction: 201519




cta

cherenkov telescope array

. An advaneed facility for
ground-based gamma-ray astronomy

CTA is the global next generation project.

A precise and sensitive probe of the extreme universe,
with huge potential for extreme astronowy and
fundamental physics with Tev photons
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The Qherenkov Telescope Array

An observatory for ground-based gamma ray astronomy
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VAarLa hELEtH and Short-Tivwescale Phenomena
(flares, gRBs, ...)
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¥ Improvement Vs. current instruments:
Diffuse continuum: x5
Angular resolution for point sources: x2
FoV for surveys: x2
Energy resolution for lines: x1.5
all-sky survey for point-like emission ling
sources: x 30
pointed observation of a 0.5°continuum

ource:




Scientific Objectives:

origin of the galactic cosmic rays
Adco UHECR cignatires
role of ultra-relativistic particles b
i clusters of galaxies, AqM, Starbursts...
The physics of (relativistic) jets and shocks B

Park Matter annihilation / decay
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VHE gamma-rays as probes of Cosmology '

= Stars and Dust
. 1ggin Galaxies
Extragalactic
background light and
Intergalactic Magnetic
field: History of
Structure formation of

the Universe
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VHE gamma-rays as probes of Cosmology

» VHE Gamma-rays interact with EBL photons
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VHE gamma-rays as probe of Cosmology
* Constraints from the current instruments:

e DM & Raue (2007)
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VHE gamma-rays as probe of Cosmology

Cosmic magnetogenesis
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Magnetic fields in the structures in the Universe are the result of amplification of pre-existing
weak "seed” fields via different types of dynamos.

«The weakest magnetic fields, possibly those at the ongin of cosmic dynamos are expected to
be found in the IGM. Measurement of the intergalactic magnetic fields (IGMF) would
constrain the initial conditions of the cosmic mag netngeneals
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VHE gamma-rays as probe of Cosmology

* {GMF measurement with gamma-ray telescopes

*-rays with energies above ~0.1
TeV are absorbed by the pair

production on the way from the
source o the Earth,

g pairs re-emity-rays via
inverse Compton scattering of
CMB photons.

*Inverse Compton y-rays could be
detected at lower energies.
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Magnetic field produces:

-Extended emission around the
point source, detectability depends
on the telescope sensitivity

-Time delay of the secondary
emission: Blazars with hard
spectra: bright in the VHE (0.1-10
TeV) energy band and
preferentially be not-so-bright in
the HE (0.1-10 GeV) band, to
make the cascade emission visible
on top of the direct primary source
emission. Good examples are the
brighest VHE blazars, like Mrk
421 and Mrk 501.




VHE gamma-rays as probe of Cosmology
The beacons: Blazars

 The most numerous objects in
the gamma-ray sky

 VHE gamma-rays: ~60 blazars:
X-ray selected BL Lacs (HBLSs) are
most numerous

y

* Highest redshift source 3C279
(FSRQ, z=0.536), but several (BL
Lac) sources with unknown redshift
(cannot be used as probes)

Fnergy index o,

« Variability vs. sensitivity of o bt ok Lot it ot i
experiments: Many sources can be 10% 10 10% 107 10% 10% 10%
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detected only during flares.
Red: FSRQs, Blue BL Lacs
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VHE gamma-rays as probe of Cosmology
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VHE gamma-rays as probe of Cosmology

CTA will:
-Provide insight to the blazar physics in the shortest timescales

-Detect more distant blazars, detect more hard spectrum blazars
and provide high quality (high photon statistics) spectra

This will enable us to:

-Study the evolution of the
Extragalactic Background Light

-Put strong constraints on the
strength of the intergalactic
magnetic field




Indirect detection of Dark Matter

WIMPs can annihilate to Standard Model Particles and have hadrons and
leptons as final products of annihilation; neutrinos, cosmic rays,
electromagnetic radiation from charged products and prompt gamma-rays

=>Indirect detection

In context of gamma-ray astronomy, the differential flux of gamma-rays from
within a solid angle AQ around a given astronomical target where DM is
expected, can be written as:

d®(AQ, E)/dE =B_"1/4n” (o v)/2m?* £BR dN/dE *J(AQ)

Boost factor, Particle Physics factor, astrophysics factor




Indirect detection of Dark Matter

e Current instruments have already presented some limits, but do not have
required sensitivity to reach the thermal value of the annihilation cross
section

e  Where to look: high M/L ratio:
 Dwarf Galaxies, Clusters of Galaxies, Galactic Halo
Anisotropies in the diffuse gamma-ray background

e CTA will be an excellent experiment for other fundamental physics searches
as well, especially for Quantum Gravity (QG) and Axion-like particle (ALP)

searches.

e Prospects for CTA discussed in Doro, Conrad et al. 2013,
Astroparticle Physics, 43, 189




Indirect detection of Dark Matter

-CTA will have a much higher chance of DM detection compared to the current
generation of IACT:

*an extended energy range will allow characterizing WIMPs with lower masses, if they
exist

*the improved sensitivity in the entire energy range will improve the probability of
detection or identification of DM through the observation of spectral features, if any

*the increased FOV with a homogeneous sensitivity as well as the improved angular
resolution will allow for much efficient searches for extended sources and spatial
anisotropies.

-1f signatures of dark matter appear in direct detection experiments, gamma-ray
observations may provide complementary approach to identify its properties and mass.

-Moreover, the heavy dark matter candidates would go undetected by e
the future experiments, while CTA could be the only experiment
sensitive in this mass region.
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Conclusions:
Strong will and strong scientific motivation exists

b ASTRON
Infra=tnuciuna Roadmap:
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Dwarf galaxies
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Galaxy clusters

e Additional complication as the signal has to be distinguished from
other gamma-ray contributions (in particular the gamma-ray signal
from CR interactions should also be spatially extended). Different
spectral shapes, different spatial extensions have to be used to
distinguish.

105

* Exclusion limits assuming
no significant CR gamma-ray signal
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Fig. 6. Prospect of detection of DM-induced signal from Fornax for a DM particle — .

annihilating into bb and 100 h integration time. The reference model is @ken From
Ref. [30] with subhalo boost factor By = 580. The shaded regions indicate the 1o
standard deviation among 10 different simulations.



Galactic Halo and Centre

e (Galactic centre and plane
sources of strong gamma-ray

=

emission from astrophysical 3 -
7 s — f:f:---:-_:: ':;___,F_:;:-- =

origin, target to regions outside
galactic plane, but still close

enough to GC to exhibit a w0
sizeable gamma-ray flux from
DM annihilation in the MW

halo. (angular distance of 0.3pc %
from the GC) $
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* Using so called ring -method
improves the sensitivity

Fig. 9. CTA sensitivities on the velocity averaged annihilation cross-section as a
function of the WIMP mass. Shown are curves for the candidate arrays E (blue) and

3 N E (red). Top: C i f the Ring Method (solid Li ) and On-OFff Method fi
e Galactic halo observations e e e et oo
of diferent WIMP spectra for the Ring Method The solid line denotes the case of
b Ll ° annihilation into bb: g+ - and t+t- spectra are shown by the dotted and dashed
lllustrate best SenS]_t]_V]_ty for the limes, respectively. On both panels, the classical annihilation cross section for
thermally produced WIMPs at 3 = 1072 cm® 57 is indicated by the black horizontal
= line. {For inter pretation of the references to colour in this figure legend, the readeris
dark matter searches with CTA eleried t the wets version o this ale)
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