

Detecting Radio Emission of Air Showers -Using AERA and LOFAR

Anna Nelles

Radboud University Nijmegen

thanks to the Pierre Auger Collaboration and the LOFAR Cosmic Ray Key Science Project

What are we looking for?

- What causes the radio emission and what are the mechanisms?
 - theoretical understanding
 signal characteristics
 comparison to simulations

- What can we contribute to cosmic ray and air shower physics?
 - open questionsexperiments

Radio Emission from Air Showers

Radio Emission from Air Showers

Electromagnetic component resposible for radio emission

Emisson arises from:

- e+ and e- are accelerated in geomagnetic field
- e+ and e- are generated and annihilated -> charge variation
- more e- than e+ in the shower

Emisson is affected by:

- Superposition of emission
- Cherenkov effects

Why Radio Emission?

- Big questions about cosmic rays of the highest energies:
 - Where are sites of acceleration?
 - What particles are those cosmic rays?
- Radio Detectors might be an efficient alternative method of measurement:
- Radio emission is sensitive to composition
- "traditional" methods: low dutycycle (11%) and expensive

Measuring Cosmic Rays

Auger Engineering Radio Array

at Pierre Auger Observatory in Argentina

Radio Antennas

measure short duration pulses from air showers

> Coincidence of more than one detector type = air shower

Example Events

- Coincidence of Surface Detectors and Radio Array
- Cross check, whether pulse is originating from cosmic ray

Example Events

-0.4

400

500

800

700

900 1000 1100 1200

slant depth [g/cm²]

Radio Events

Data from May 2011 - September 2012

- Geomagnetic effect is clearly visible
- effects of trigger and dead time not corrected for

Emission mechanisms

Measuring Cosmic Rays

Auger Engineering Radio Array

at Pierre Auger Observatory in Argentina

Radio Antennas

measure short duration pulses from air showers

> Coincidence of more than one detector type = air shower

Particle Detector

Measuring Cosmic Rays

LOFAR - Low frequency array in Drenthe, Netherlands

Antenna electronics identify pulse and trigger

External trigger from LORA

Coincidence of more than one detector = air shower

Location: LOFAR vs AERA

- Northern Hemisphere: Netherlands
- ~ 5 m above sea-level
- mostly humid, ground can be swamped
- flat, rain, but not so many thunderstorms
- magnetic field direction north, pointing down (60°), 48 000 nT

Comparison: LOFAR Radboud Air Shower Array

13 Anna Nelles, Quantum Universe, QU3, 2013

- Southern Hemisphere: Argentina
- ~ 1400 m above sea-level
- mostly dry, salty, sunny
- flat, many thunderstorms
- magnetic field direction (almost) north, pointing up (-40°), 24 000 nT
- Comparison: Fluorescence and Surface Detector of the Pierre Auger Observatory

Location: LOFAR vs AERA

- Northern Hemisphere: Netherlands
- ~ 5 m above sea-level
- mostly humid, ground can be swamped
- flat, rain, but not so many thunderstorms
- magnetic field direction north, pointing down (60°), 48 000 nT
- Comparison: LOFAR Radboud Air Shower Array
- 14 Anna Nelles, Quantum Universe, QU3, 2013

- Southern Hemisphere: Argentina
- ~ 1400 m above sea-level
- mostly dry, salty, sunny
- flat, many thunderstorms
- magnetic field direction (almost) north, pointing up (-40°), 24 000 nT
- Comparison: Fluorescence and Surface Detector of the Pierre Auger Observatory

Cosmic Ray Data

- effective area limited by particle detectors
- antenna density is higher at LOFAR, but information for cross-check weaker

- all stations can be triggered
- measurement of "large events" possible

Sensitiviy to composition

Sensitiviy to composition

17 Anna Nelles, Quantum Universe, QU3, 2013

S. Buitink, Nijmegen/Groningen

Conclusions

• We will now uncover the details about radio emission from air showers

and what we can learn from it about air showers

