

Content

- High energies: soft x hard

■ Soft = hadron info (probabilities), hard = partonic cross section

- Probabilities include spin-spin correlations

TMD = Transverse

- Are TMD PDFs relevant and can they be measured? Momentum Dependent
- Yes, there are besides spin-spin and also spin-orbit correlations

■ Yes, they can be measured (DY, SIDIS, ...)
■ But there are complications!

- Gauge links, universality, factorization

■ But also a theoretical framework to help out: QCD \square Extension of OPE resummed into PDFs to - Distribution and fragmentation functions (time reversal)

- The reward

■ Novel hadronic info on spin and orbital structure
$■$ Possible use of proton as tool (playing with partons)

QCD \& Standard Model

- QCD framework (including electroweak theory) provides the machinery o calculate cross sections, e.g. $\gamma^{*} \mathrm{q} \rightarrow \mathrm{q}, \mathrm{q} \bar{q} \rightarrow \gamma^{*}, \gamma^{*} \rightarrow \mathrm{q} \bar{q}, \mathrm{qq} \rightarrow \mathrm{qq}$, $\mathrm{qg} \rightarrow \mathrm{qg}$, etc.
- E.g. qg $\rightarrow \mathrm{qg}$

- Calculations work for plane waves
$\langle 0| \psi_{i}^{(s)}(\xi)|p, s\rangle=u_{i}(p, s) e^{-i p . \xi}$
$\langle 0| A_{\mu}^{(\lambda)}(\xi)|p, s\rangle=\varepsilon_{\mu}(p, \lambda) e^{-i p . \xi}$
$u(p, s) \bar{u}(p, s)=\frac{1}{2}(p+m)\left(1+\gamma_{5} \phi\right) \quad \varepsilon^{\mu}(p, \lambda) \varepsilon^{\nu *}(p, \lambda)=-g_{T}^{\mu v}+.$.

Separating Soft and Hard Physics at high energies

Hadron correlators

- Hadronic correlators establish the diagrammatic link between hadrons and partonic hard scattering amplitude
■ Quark, quark + gluon, gluon, ...

$$
\langle 0| \psi_{i}(\xi)|p, s\rangle=u_{i}(p, s) e^{-i p, \xi}
$$

- Disentangling a hard process into parts involving hadrons, hard scattering amplitude and soft part is non-trivial

J.C. Collins, Foundations of Perturbative QCD, Cambridge Univ. Press 2011
$\langle X| \psi_{i}(\xi) A^{\mu}(\eta)|P\rangle e^{+i\left(p-p_{1}, \xi+\dot{s} p_{1} \cdot \eta\right.}$

Role of the hard scale

■ In high-energy processes other momenta are available, such that P. P^{\prime} ~ s with a hard scale s >> M ${ }^{2}$

■ Employ light-like vectors P and n, such that P.n $=1$ (e.g. $\left.n=P^{\prime} / P . P^{\prime}\right)$ to make a Sudakov expansion of parton momentum (write $s=Q^{2}$)

$$
\begin{array}{rlrl}
p & =x P^{\mu}+p_{T}^{\mu}+\sigma n^{\mu} & x=p^{+}=p \cdot n \quad(0 \leq x \leq 1) \\
& \sim \mathrm{Q} & \sim \mathrm{M} \sim \mathrm{M}^{2} / \mathrm{Q} & \\
& \sigma=p^{-}=p \cdot P-x M^{2} \sim O\left(M^{2}\right)
\end{array}
$$

■ Enables importance sampling (twist analysis) for integrated correlators,

$$
\Phi(p)=\Phi\left(x, p_{T}, p . P\right) \Rightarrow \Phi\left(x, p_{T}\right) \Rightarrow \Phi(x) \Rightarrow \Phi
$$

$$
\begin{array}{ll}
x=p . n / P . n=Q^{2} / 2 P . q=x_{B} & \text { independent of } \mathrm{n}, \\
z=K . n / k . n=P . K / P . q=z_{h} & \text { up to } 1 / Q^{2} \text { corrections! }
\end{array}
$$

- This provides the accessible transverse momentum variable
$q_{T}=q+x_{B} P-z_{h}^{-1} K=k_{T}-p_{T}$
- ... which is of course also just the transverse momentum $\mathrm{K}_{\perp(\mathrm{P}, \mathrm{q})}$

Large p_{T}

- p_{T}-dependence of TMDS

- $\Phi\left(x, p_{T}\right)_{\mathrm{p}_{\mathrm{T}}{ }^{2}>\mu^{2}}^{\rightarrow} \frac{1}{\pi p_{T}^{2}} \frac{\alpha_{s}\left(p_{T}^{2}\right)}{2 \pi} \int_{x} \frac{d y}{y} P\left(\frac{x}{y}\right) \Phi\left(y ; p_{T}^{2}\right)$
- Consistent matching to collinear situation: CSS formalism

■ Extended (Collins, Rogers, Aybat,...) and used (Boglione, ...)
JC Collins, DE Soper and GF Sterman, NP B 250 (1985) 199
A Bacchetta, D Boer, M Diehl, PJM, JHEP 0808 (2008) 023

Summarizing: color gauge invariant correlators

- So it looks that at best we have well-defined matrix elements for TMDs but including multiple possiblities for gauge links and each process or even each diagram its own gauge link (depending on flow of color)
- Leading quark TMDs:
$\Phi^{[U]}\left(x^{c} p_{T} ; n\right)=\left\{f_{1}^{[U]}\left(x^{c} p_{T}^{2}\right) \square f_{1 T}^{\square[U]}\left(x^{c} p_{T}^{2}\right) \frac{\epsilon_{T}^{p_{T} S_{T}}}{M}+g_{1 s}^{[U]}\left(x^{c} p_{T}\right) \bigvee_{5}\right.$

$$
\left.+h_{1 T}^{[U]}\left(x^{c} p_{T}^{2}\right) \mathrm{Y}_{5} S_{T}+h_{1 s}^{\amalg[U]}\left(x^{c} p_{T}\right) \frac{\mathrm{Y}_{5} A_{T}}{M}+i h_{1}^{[U]}\left(x^{c} p_{T}^{2}\right) \frac{p_{T}}{M}\right\} \frac{R}{2}
$$

- Leading gluon TMDs:

$$
\begin{aligned}
& 2 x \Gamma^{\theta \vee[U]}\left(x^{c} p_{T}\right)=\square g_{T}^{\theta \vee} f_{1}^{g[U]}\left(x^{\wedge} p_{T}^{2}\right)+g_{T}^{\theta \vee} \frac{\epsilon_{T}^{p_{T} S_{T}}}{M} f_{1 T}^{\square g[U]}\left(x^{\wedge} p_{T}^{2}\right) \\
& +i \epsilon_{T}^{\theta \vee} g_{1 s}^{g[U]}\left(x^{\mathrm{c}} p_{T}\right)+\left(\frac{p_{T}^{\theta} p_{T}^{\vee}}{M^{2}} \square g_{T}^{\theta \vee} \frac{p_{T}^{2}}{2 M^{2}}\right) h_{1}^{\square g[U]}\left(x p_{T}^{2}\right) \\
& \square \frac{\epsilon_{T}^{p_{T} \boldsymbol{\varsigma} \theta} p_{T}^{\vee} \diamond}{2 M^{2}} h_{1 s}^{\square g[U]}\left(x^{c} p_{T}\right) \square \frac{\epsilon_{T}^{p_{T} \boldsymbol{\uparrow} \theta} S_{T}^{\vee} \diamond \epsilon_{T}^{S_{T} \boldsymbol{\varsigma} \theta} p_{T}^{\vee} \diamond}{4 M} h_{1 T}^{g[U]}\left(x^{c} p_{T}^{2}\right) \triangleright
\end{aligned}
$$

Basic strategy: Taylor expand

- Taylor expansion for functions around zero

$$
f(z)=\sum_{n} \frac{f^{n}}{n!} z^{n} \quad f^{n}=\left.\frac{\partial^{n} f}{\partial z^{n}}\right|_{z=0}
$$

- Mellin transform for functions on [-1,1] interval

$$
f(x)=-\frac{1}{2 \pi i} \int_{c-i \infty}^{c+\infty} d n x^{-n} M_{n} \quad M_{n}=\int_{0}^{1} d x x^{n-1} f(x)
$$

- functions in (transverse) plane

$$
f\left(p_{T}\right)=\sum_{n} \sum_{\alpha_{1} \ldots \alpha_{n}} p_{T}^{\alpha_{1}} \ldots p_{T}^{\alpha_{n}} f_{\alpha_{1} \ldots \alpha_{n}} \quad f_{\alpha_{1} \ldots \alpha_{n}}=\left.\partial_{\alpha_{1}} \ldots \partial_{\alpha_{n}} f\left(p_{T}\right)\right|_{p_{T}=0}
$$

Operator structure in TMD case

- For TMD functions one can consider transverse moments

$$
\begin{aligned}
& \Phi\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[\pm]} \psi(\xi)|P\rangle_{\xi, n=0} \\
& p_{T}^{\alpha} \Phi^{[\pm]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0 \pm \infty]} D_{T}^{\alpha} U_{[\pm \infty, \xi]} \psi(\xi)|P\rangle_{\xi, n=0} \\
& p_{T}^{\alpha_{1}} p_{T}^{\alpha_{2}} \Phi^{[\pm]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \pm \infty]} D_{T}^{\alpha_{1}} D_{T}^{\alpha_{2}} U_{[\pm \infty, \xi]} \psi(\xi)|P\rangle_{\xi, n=0}
\end{aligned}
$$

- Upon integration, these do involve collinear twist-3 multi-parton correlators

Operator structure in collinear case (reminder)

- Collinear functions and x-moments

$$
\begin{aligned}
& \Phi^{q}(x)=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi . n=\xi_{T}=0} \\
& x^{N-1} \Phi^{q}(x)=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0)\left(\partial^{n}\right)^{N-1} U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi . n=\xi_{T}=0} \\
& \mathrm{x}=\mathrm{p} . \mathrm{n} \quad=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]}\left(D^{n}\right)^{N-1} \psi(\xi)|P\rangle_{\xi . n=\xi_{T}=0}
\end{aligned}
$$

■ Moments correspond to local matrix elements of operators that all have the same twist since $\operatorname{dim}\left(D^{n}\right)=0$

$$
\Phi^{(N)}=\langle P| \bar{\psi}(0)\left(D^{n}\right)^{N-1} \psi(0)|P\rangle
$$

- Moments are particularly useful because their anomalous dimensions can be rigorously calculated and these can be Mellin transformed into the splitting functions that govern the QCD evolution.

Operator structure in TMD case

- For first transverse moment one needs quark-gluon correlators

$$
\begin{aligned}
& \Phi_{D}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right)=\int \frac{d \xi \cdot P d \eta \cdot P}{(2 \pi)^{2}} e^{i\left(p-p_{1}\right) \cdot \xi+p_{1} \cdot \eta}\langle P| \bar{\psi}(0) D_{T}^{\alpha}(\eta) \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0} \\
& \Phi_{F}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right)=\int \frac{d \xi \cdot P d \eta \cdot P}{(2 \pi)^{2}} e^{i\left(p-p_{1} \cdot \cdot \xi+p_{1} \cdot \eta\right.}\langle P| \bar{\psi}(0) F^{n \alpha}(\eta) \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0}
\end{aligned}
$$

- In principle multi-parton, but we need
$\Phi_{D}^{\alpha}(x)=\int d x_{1} \Phi_{D}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right)$
$\Phi_{A}^{\alpha}(x)=P V \int d x_{1} \frac{1}{x_{1}} \Phi_{F}^{n \alpha}\left(x-x_{1}, x_{1} \mid x\right)$

$\tilde{\Phi}_{\partial}^{\alpha}(x)=\Phi_{D}^{\alpha}(x)-\Phi_{A}^{\alpha}(x)$	T-even (gauge-invariant derivative)
$\Phi_{G}^{\alpha}(x)=\Phi_{F}^{n \alpha}(x, 0 \mid x)$	T-odd (soft-gluon or gluonic pole)

The next step: (full) TMDs of definite rank

- Collecting right moments gives expansion into full TMDs of definite rank $\Phi^{[U]}\left(x, p_{T}\right)=\tilde{\Phi}\left(x, p_{T}^{2}\right)+C_{G}^{[U]} \pi p_{T i} \tilde{\Phi}_{G}^{i}\left(x, p_{T}^{2}\right)+C_{G G, c}^{[U]} \pi^{2} p_{T i j} \tilde{\Phi}_{G G, c}^{i j}\left(x, p_{T}^{2}\right)+\ldots$
$+p_{T i} \tilde{\Phi}_{\partial}^{i}\left(x, p_{T}^{2}\right)+C_{G}^{[U]} \pi p_{T i j} \tilde{\Phi}_{\{\partial G \mid}^{i j}\left(x, p_{T}^{2}\right)+\ldots$
$+p_{T i j} \tilde{\Phi}_{\partial \partial}^{i j}\left(x, p_{T}^{2}\right)+\ldots$
- Depending on spin of hadron, only a finite number needed
- Example: quarks in an unpolarized target needs only 2 functions
$\tilde{\Phi}\left(x, p_{T}^{2}\right)=\left(f_{1}\left(x, p_{T}^{2}\right)\right) \frac{\not P}{2} \quad \pi \tilde{\Phi}_{G}^{\alpha}\left(x, p_{T}^{2}\right)=\left(i h_{1}^{\perp}\left(x, p_{T}^{2}\right) \frac{\gamma_{T}^{\alpha}}{M}\right) \frac{\not P}{2}$
T-even
T-odd

Conclusion with (potential) rewards

- (Generalized) universality via operator product expansion extends the well-known collinear distributions (including polarization, 3 for quarks and 2 for gluons) with novel TMD functions of definite rank.
- The rank m is coupled to $\cos (m \phi)$ and $\sin (m \phi)$ azimuthal asymmetries. Highest rank is $2\left(\mathrm{~S}_{\text {hadron }}+\mathrm{S}_{\text {parton }}\right)$.
- TMDs encode aspects of hadronic structure, e.g. spin-orbit correlations, such as T -odd transversely polarized quarks or T -even longitudinally polarized gluons in an unpolarized hadron (thus opening possible use for precision probing at the LHC)
- The TMDs appear in cross sections with specific calculable coefficients that depend on the flow of color in the tree-level diagrams:
gluon + gluon \rightarrow colorless (distinguish CP+ from CP- Higgs) gluon + gluon \rightarrow quark-antiquark pair.
- Factorization studies (scaling) for TMDs are still in an early phase.

