

Operator structure in TMD case						
 Transverse moments can be expressed in these particular collinear multi-parton twist-3 correlators (which are not suppressed!) 						
$\Phi_{\partial}^{\alpha[U]}(x) = \int d^2 p_T p_T^{\alpha} \Phi^{[U]}(x, p_T; n) = \tilde{\Phi}_{\partial}^{\alpha}(x) + C_G^{[U]} \pi \Phi_G^{\alpha}(x)$						
$\begin{array}{c c} \hline \textbf{T-even} & \hline \textbf{T-even} & \hline \textbf{T-odd} \\ \hline \Phi_{\partial\partial}^{\alpha\beta U }(x) = \tilde{\Phi}_{\partial\partial}^{\alpha\beta}(x) + C_{GG}^{ U }\pi^2 \Phi_{GG,c}^{\alpha\beta}(x) + C_{G}^{ U }\pi \left(\tilde{\Phi}_{\partial G}^{\alpha\beta}(x) + \tilde{\Phi}_{\partial \partial}^{\alpha\beta}(x) \right) \end{array}$						
Tr _c (GG vp) Tr _c (yp)						
C _G ^[U] calculable	U	$U^{[\circ]}$	$U^{[+]}U^{[\Box]}$	$\frac{1}{N_c} \operatorname{Tr}_c(U^{[\Box]}) U^{[+]}$		
gluonic pole	$\Phi^{[U]}$	Φ [∘]	$\Phi^{[+\Box]}$	$\Phi^{[(\square)+]}$		
factors	$C_G^{[U]}$	o 1	3	1		
	$C_{GG^{\circ}1}^{[U]}$	1	9	1		
	$C_{GG^{\circ}2}^{[U]}$	0	0	4 37		

Summarizing quark TMDs up to spin 1/2 targets						
GLUONIC POLE RANK						
0	1	2	3			
$\Phi(x^c p_T^2)$	$\pi C_G^{[U]} \Phi_G$	$\pi^2 C^{[U]}_{GG^{i_c}} \Phi_{GG^{i_c}}$	$\pi^3 C^{[U]}_{GGG^{\epsilon_c}} \Phi_{GGG^{\epsilon_c}}$			
$\widetilde{\Phi}_{\Box}$	$\pi C_G^{[U]} \widetilde{\Phi}_{\P \cap G \Diamond}$					
$\widetilde{\Phi}_{\Box\Box}$	$\pi C_G^{[U]} \widetilde{\Phi}_{\P \square \square G \diamondsuit}$					
Φ						
PDFs FOR SP	IN 0 HADRONS	PDFs FOR SPIN	1/2 HADRONS			
f_1 h_1^{\Box}		$g_1, h_1 = f_{1T}^{\square}$	$h_{1T}^{\Box \ (B1)}, h_{1T}^{\Box \ (B2)}$			
		g_{1T},h_{1L}^{\square}				
	+	$h_{1T}^{\square \ (A)}$				
$\begin{array}{c c} \text{PFFs FOR SP} \\ \hline D_1 \\ \hline H_1^{\Box} \\ \end{array}$	IN 0 HADRONS	$\begin{array}{c} \mbox{PFFs FOR SPIN 1}\\ \hline G_1, H_1 \\ \hline G_{1T}, H_{1L}^{\ominus}, D_{1T}^{\ominus} \\ \hline H_{1T}^{\ominus} \end{array}$	1/2 HADRONS			
Buffing A Mukherie	e. P1M. PRD2012 . Arxiv	/: 1207.3221 [hep-ph]	40			

