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ABSTRACT

Quantum Chromodynamics at Work

Piet Mulders (Nikhef/VU University Amsterdam)

The matter in our world and the visible matter in the universe is made up of atoms consisting of electrons and nuclei built from
protons and neutrons. At and above the atomic scale the interactions are primarily gravity and the electroweak forces. The latter
include the interactions between charges and photons, which are beautifully described in quantum electrodynamics (QED). The
atomic world also beautifully illustrates how charged particles including their spins provide a basis for enormous complexity.

In the subatomic world, the theoretical framework is Quantum Chromodynamics (QCD) that describes the strong interactions
between color charges, carried by quarks and the force mediators themselves, confining them inside the nucleons, protons and
neutrons. The framework of QCD certainly rivals in beauty with QED and s in fact much richer being a non-abelian gauge theory
based on the symmetry group of the three color charges.

In the description of high energy scattering processes, the most important input used to encode the structure of hadrons is a set
of Parton Distribution Functions (PDFs) representing probabilties for finding specific quarks and gluons (partons) carrying
fractions x of the parent hadron’s momentum (soft collinear part). The different functions in this set describe in essence spin-
spin transfer probabilities. The interactions of the partons (hard part) are calculated using perturbation theory within the
quantum field theoretical framework known as the Standard Model of particle physics.

One can go beyond this collinear approach. In that case one has to include the transverse momentum of the partons. It leads to
a novel set of Transverse Momentum Dependent (TMD) distribution functions. Such functions take into account various spin-orbit
correlations that may exist in a hadron, including socalled time-reversal odd functions describing spin — momentum transfer
between hadrons and partons. I this transverse momentum dependence a useful addition? Can it be measured? Can the
formalism be set up and used in the same successful way as collinear PDFs, which are related to expectation values of field
operators using the Operator Product Expansion in QCD? The answer is yes, but ... But after accounting for the complications,
quark and gluon TMDs offer new insight into spin and orbital substructure of hadrons while they also may provide new tools to
explore physics beyond the Standard Model, which is one of the ways to study the basic structure of our universe.

Content

m High energies: soft x hard

m Soft = hadron info (probabilities), hard = partonic cross section

m Probabilities include spin-spin correlations TMD = Transverse
m Are TMD PDFs relevant and can they be measured?

m Yes, there are besides spin-spin and also spin-orbit correlations

= Yes, they can be measured (DY, SIDIS, ...) PDF = Parton
m But there are complications!

m Gauge links, universality, factorization QCD yes, but nothing
m But also a theoretical framework to help out: QCD  on LO, NLO, ....

m Extension of OPE resummed into PDFs to TMDs (definite rank)

= Distribution and fragmentation functions (time reversal)
m The reward

= Novel hadronic info on spin and orbital structure

m Possible use of proton as tool (playing with partons)

_ Distribution Function

Separating Soft and Hard Physics at high energies

QCD & Standard Model

m QCD framework (including electroweak theory) provides the machinery
to calculate cross sections, e.g. v*q — q, 49 — v*, v¥* - qq, 99 — qq,
qg — qg, etc.

= E.g.q9—qg
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m Calculations work for plane waves
(@] pos)=upre™ (o4 @|p.s)=e,(n e
u(p,s)u(p,s)=5(p+m)(1+y8)  €(p,De"(p,A) =g +...

Hadron correlators

Hadronic correlators establish m Disentangling a hard process
the diagrammatic link between into parts involving hadrons,
hadrons and partonic hard hard scattering amplitude and
scattering amplitude soft part is non-trivial

Py
® Quark, quark + gluon, gluon, ...

(o]y; @ ps)=upsr e

(x|y @p)ers P

J.C. Collins, Foundations of Perturbative
QCD, Cambridge Univ. Press 2011
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' Hadron correlators ! ' Soft part: hadron correlators !
] !
m At high energies no interference and squared amplitudes can be m Forward matrix elements of parton fields describe
rewritten as correlators of forward matrix elements of parton fields distribution (and fragmentation) parts
pt P
m Math: 4(P.S)E(p.s) = D(P|W ()X ><X 1y (0)P)S(p—P+P,) :
" = = =
_ dg /|- i(p-P+Py).E d*E e i
;j S (Ply,O1x><x 15,0 P)e ®,(p:P)=®,(pl p)= jﬁe (|70 ()| P)
d - i .
:Zjﬁ@‘ Y O)1X >< X 1y &)|P)e™* m Also needed are multi-parton correlators Ip
x g (time-ordering?)
m Picture: =Jge"”<1’\v’,<0’w‘f)\1’> s P 3 P
n d'8d'n ipéein,. - « )
P, (P=pep 1 P)= fﬁe e Pl 0)A“ () y(E)|P)
m These correlators usually just will be parametrized in
terms of PDFs (nonperturbative physics)
7 8

‘ PDFs and PFFs l ‘ Role of the hard scale

m In high-energy processes other momenta are available, such that
P.P" ~ s with a hard scale s >> M?

Basic idea of PDFs and PFFs (also for TMDs) is to obtain a full
factorized description of high energy scattering processes

m Employ light-like vectors P and n, such that P.n = 1 (e.g. n = P'/P.P) to

6=IH(p,.p,...)"  calculable
; make a Sudakov expansion of parton momentum (write s = Q?)

P

p=xP*+pi+on* == <x<
defined (1) ’ TT " s=p =pe Wszsl
& 2 c=p =p.P—xM*~O0(M?)
portable ~Q ~M ~M/Q =p =p.
¥ ®m Enables importance sampling (twist analysis) for integrated correlators,
OB Pye) =[] et (0, Pty 9@, (. Piat) (=B pP) = Dlen) o D) =
5 . . P)=LX, P, P. = X, P = X) =
Give a meaning to ®0,,. (PsDy i) A (kK3 p0).... ! !
integration variables! 9 10

' (Un)integrated correlators l ' (Un)integrated correlators

D(x,p,, p.P)= I%e"”‘%ﬂ w0) l//(§)‘P> m unintegrated

d'¢ . _
®(x.py.p.P) = [ S5 o7 (P0) p&)| P : .
T en” (P ) ®(x.p, m)= J%e,p;@‘w) )| Py TMD (light-front)
(27) S
m o = p integration makes time-ordering automatic.
" 4 components ' i 4 integrations J The soft part is simply sliced at the light-front
- ‘Ewi - ‘E d(x)= Lép) <l pluo P
[dpo(p)=[ap]| e | 8. =] o < (PO vElP=

I o i m collinear (light-cone)
m Is already equivalent to a point-like interaction

@=(P|0) y1&)

i
m local

m Local operators with calculable anomalous dimension




' Twist analysis in PDF parametrization

m Dimensional analysis to determine which correlators are important
m Maximize contractions with n (in matrix elements)

dim[P(0)i w(§)]=2
dim[F"*(0)F" (£)]=2
dim[p(0)i A7 (1) Y($)] =3~

... or maximize # of P’s in parametrization of ®

@0 = /1), & f0=] (‘;—fr)e“*(P\ PO y(An)|P)
m Compare

= Free quarks u(p,s)u(p,s)=p+m

m Parton model [ (x) (p+m)= f(x) xP + m f(x)

= Correlators P(p,P) = xf(x)P + Mx e(x) + ...

Higher dimension
compensated by 1/Q
in cross section

@

relevance and measurability of TMDs

' Results of many years of work !
!
MSTW 2008 NLO PDFs (68% C.L.)
PDF sets: —~12 ~12
MSTW 'b‘ 2 2 B‘ a2 a 2
CTEQ % | Q=10 GeV?{ % L 1@ =10* GeV? |
GRV
0.8 b 0.8 b
06 4 o B
But there is more g 4| B 0.4- b
TMDs
GPDs 02 1 02f 1
DPDs
EERTTIT AR = vl v vd 1l m
10*  10° 102 10" 1 0% 10° 102 10" 1
X X
This talk
Talk Iris Abt (DIS2012): summarizing HERA 14

‘ Access to transverse momenta: f(x) > f(x,pr)

m SIDIS: v*(q) + H(P) > h(K) + X
Underlying hard process: ¥*(q) + q(p) 2> q(k) p+q=k
m Include transverse components in quark momenta
leading to a non-collinearity p=xP+p,
q,=q+x P—z’lK:kT—pT zz"[{.;.kr

m Go to sufficiently high energies to identify fractions x and z:
x=pn/Pn=Q"/2Pq=x,
z=Knlkn=PK/Pq=z,

m This provides the accessible transverse momentum variable

\q\'.
[ qT:q+xBP_Z;lK:kT_pT ] b‘éy

independent of n,
up to 1/Q2 corrections!

- ; S
m ... which is of course also just the transverse momentum K, ) (g(l?
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' Access to transverse momenta l

m Also in more complex situations like hadron-hadron collisions

P =xP+py
Py = 5B+ py

proton

2

PP, _ (e +k,).P,

NI e T RR
e e qT:kjm.|+k,er.z_x1P|_x2Pz %zi
&
=Pyt Py §_J
O
Boer & Vogelsang & 1

New information in TMD's: f(x,pr) l

m Quarks in polarized nucleon: § = S, [£+Mnj+ S, SZ + S; =-—1]

(i P,S) o< xf ! (x,p;) P + S, xg), (x, p;) PY,

/+Xhqu (x,p;)STPﬂfs + \ chiral quarks in

— L-polarized N
unpolarize
compare
quarks T-polarized quarks _ .
in T-polarized N u(p,s)u(p,s)=+(p+m)(1+y.s
m .. butalso
S
O (pip.s) o ot L g Py, 4
pd
..Spin €= spin__ chiral quarks

in T-polarized N 18




' New information in TMD's: f(x,pr)

Fermionic structure of TMDs

m ... and T-odd functions

XS, )
O (p;P,S) o< ... + ihﬁ”(x,p;)%PH%x (e p2)P + .
P Pl
T-polarized quarks unpolarized quarks in
in unpolarized N T-polarized N (Sivers)
(Boer-Mulders)
compare
...Spin €= orbit u(p,s)u(p,s)==+(p+m)(1+y.s

m Note that there are also parts that lack simple partonic interpretation
®(p;P,S) <.+ Mxe'(x,p;) + ...

.. Higher-twist parton mass? But these are suppressed and
e linked to quark-gluon correlators via EQM 19

Aed) = O - ®+®
unpolarized quark = Q @
distribution
- Mflr(z,m) = - @
2y _
helicity or chlrallty Sequlapr) =
distriby .8
pTMbj ng(Z,:Di) =
f9(x) = a(x)
9,9(x) = Aq(x) 82 th(E,Pi) _

h,9(x) = 8q(x
1900 = 30 R
transverse spin distr.

. PT ht 2 _
z ik (z.p7) =
or transversity

PF L 2
Segphi(@pr) =

. 8o p2
piTM 2 %hfr(m,pi) =

@@@@ @»@-»

*@+
®
“®
@
-~
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‘ Time reversal invariance

0 TMD-correlators are not T-invariant (allowing specific spin-
orbit correlations)

0 QCD is T-invariant > Separate TMDs into T-even and T-odd
QO T-odd observables ¢-> T-odd TMDs
Q0 Example of T-odd observable: single spin asymmetry
E.g. left-right asymmetry in p(R)p,(P,) — 7#(K)X
Q Collinear hard T-odd contribution zero (~o.?, am,),
pr-contributions remain
p+p—>7r+X p+p—>r+X

R O T 2N

q+q— q+gq q+qT—>qT-kg
1p—g g P—q Llgor
T T-odd 2 h‘ ,,,,,,, Hl ,,,,,,, T-odd

Qiu & Sterman, 1997; Boer & M; Anselmino et al.

‘ New information in gluon TMD's: f(x,p;)

m Also for gluons there are new features in TMD's circularly polarized
3 gluons in L-pol. N

“ ‘s‘pin <> spinw‘
P (piP.S) < — gl af F (x, py) + S, 8 xg (%))

PPy w Py

-8
unpolarized gluons [ M? T om?
in unpol. N quarks

] xh't (x,py) +

\
linearly polarized
compare gluons in unpol. N

" (Gluon Boer-Mulders)
e (pAE" (p,A) =g +

. spm <> orblt
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Complications for TMDs
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' Large py

m p;-dependence of TMDs

f”dzpr D(x,p,) = <I>(Tx;/t2)

Large u?

dependence

governed by

anomalous dim

(i.e. splitting

5 functions)

| ‘P(X,PT) N LM j- ﬂp[ﬁjq;(y;pi)
P> gpl 27 Ly \y

m Consistent matching to collinear situation: CSS formalism

m Extended (Collins, Rogers, Aybat,...) and used (Boglione, ...)

Fictitious
measurement

JC Collins, DE Soper and GF Sterman, NP B 250 (1985) 199

A Bacchetta, D Boer, M Diehl, PJM, JHEP 0808 (2008) 023 24




Color gauge invariance

¢

m Gauge invariance in a non-local situation requires a gauge link U(0,&)

= 1 _
TOIZE Z; & EN 0, .0, Y(0)
! ;
U@0,86)=2 Cxp(—igjds”Aﬁ)
0

FOUOEYE =T .. £ FO)D, .. D, y10)

m Introduces path dependence for &(x,py)
\(x,p,) = O(x) o

25
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Which gauge links?

¢

d(EP)E,
@)’

dGP) ipiip| "
DY (x;n) = Ime »<(P| 7, (OUL v, (&) P);,,,:ézo collinear

@Z[C'(x, prin) = I ere <P‘ ¥;(0) U[It% v.(&) ‘ P>¢.n:u TMD

4 Gauge links come from dimension zero collinear A.n gluons, but is for
TMD correlators process-dependent:

DY )x_\ ", SIDIS
RO i T
N - *
wi S /.?TTA“ .
tr Er
Fis) <$=mmm) i+
& Time reversal £

AV Belitsky, X Ji and F Yuan, NP B 656 (2003) 165
D Boer, PJM and F Pijiman, NP B 667 (2003) 201 26

Which gauge links?

|

wice AEPIPE, /i) g i) o
&€ s, pyimy= [ LEDLE ns(plucs OV E|P),

n=0

(27[)3 10.1

@ The TMD gluon correlators contain two links, which can have
different paths. Note that standard field displacement involves C = C’

FP &) — Uint) F7(¢) Utém

@ Basic (simplest) gauge links for gluon TMD correlators: 99> H

b o/

-1 -
& [++] = P,
] & '—‘75,
@+
C Bomhof, PIM, F Pijiman; EP] C 47 (2006) 147 i in > Qa
F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301 | 99 27

Some details on gauge links

@

m Proper gluon fields (F rather than A and boundary terms)
P+ 1
A(p)=nA(p)—+iAl(p)+... =——[nA(p,) p{' +iGi"(p)+...]
npP pn

m Resummation of soft n.A gluons (coupling to outgoing color-line) for one
correlator into a gauge-line (along n)

L k
Vi 7 gﬁe  a E ;@
£ PR TR PEP P{ r{

m Lowest order contributions of soft gluons (coupling to outgoing color-
line) for two correlators, resummed into ‘gauge-knots’

' Which gauge links?

m With more (initial state) hadrons
color gets entangled, e.g. in pp

v(&) 7 0,)

m Outgoing color contributes future g Can be color-detangled if only p;
pointing gauge link to ®(p,) and of one correlator is relevant
future pointing part of a loop in (using polarization, ...) but must
the gauge link for @(p,) include Wilson loops in final U

T.C. Rogers, PIM, PR D81 (2010) 094006 MGA Buffing, PIM, JHEP 07 (2011) 065
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' Summarizing: color gauge invariant correlators

m So it looks that at best we have well-defined matrix elements for TMDs
but including multiple possiblities for gauge links and each process or
even-each-diagramits-own-gauge tink (depending-on-fltow of cofor)

m |eading quark TMDs:

; i ST .
O prin) = {f{”(m ) 0 it e nh) S o @ pevs

Bn)
7

W Yo By o) S+ iy Ve 5

R
5

M

m Leading gluon TMDs:

pPToT

U € U] p

20T ap) = g F1 ) + g L i (@n?)
0 v 2
o PIPY  ov P v,
+ich gl (wpr) + (% ‘grvﬁyz) hy oV (ep?)
16 Sr96

‘g'ﬂ S;'%“Tﬂ p;'O polvl
aM i

gprw VO
[ T2]\/[€T h1sg[U](z‘PT) J

(wp?)>
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' Opportunities to see color-induced phases in QCD

w(§>=Pexp(-fgfdsuﬂ)w(0>

Figures by Kees Huyser.
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Next step

32

Basic strategy: Taylor expand

@

m Taylor expansion for functions around zero

f(z)=2£—:z” " =§7{
. n! Z

m Mellin transform for functions on [-1,1] interval

z=0

f(x) =—L‘“ dnx"M M" = j dxx"']f(x)
27, " °

c—ioo

m functions in (transverse) plane

Fp)=2 2 P s, .

n a..a,

fa...a =aa "'aa f(pT)
18y i ' Pr=0
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‘ Operator structure in collinear case (reminder)

m Collinear functions and x-moments

Y(x)= j%e”’ {PlpO)UlL w)|P)

En=£,=0

A ()= I d((f;;) < :<P‘ PO@Y U, ’/’(@‘ P>§.n:§,:[)

d(éP) ip& = [n n\N-]
='[ 2r) < <P‘I//(O)UID-¢J(D " ‘W(§>‘P>
m Moments correspond to local matrix elements of operators that all have
the same twist since dim(D") = 0

M = <p‘ wO)(D")N! l//(O)\P>

m Moments are particularly useful because their anomalous dimensions
can be rigorously calculated and these can be Mellin transformed into
the splitting functions that govern the QCD evolution.

En=5,=0
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Operator structure in TMD case

¢

m For TMD functions one can consider transverse moments

a0 = [ LD s (o0 g, o),

(0] 7T

e m= [ sl 7w, ),

o ot d(¢.P)d’¢,
L@ (x, pin) = T ind
Py PP ppin) f o ¢

m Upon integration, these do involve collinear twist-3 multi-parton
correlators

35

<P‘ PO, DfDEU,_, ly/(ﬁ)‘ P>{ »

Operator structure in TMD case

¢

m For first transverse moment one needs quark-gluon correlators
dEPAN.P i(ppyesi —
@ (x—x,x,10)= | 5(2”)727 T mEnpl0) DI () p£)| P)
dé.Pdn.P ) Einn
@)
m In principle multi-parton, but we need

Enegy=0

& (x-x,x,10)= | (PlROF™ () y1&)|P)

En==0

p—nf

@ (x)= [ dx, @ (x—x,,x,1x)
o(x)= v [ dy, L@ (x—x 3, 1)
X,

&Dg(x) =7 (x) —‘I’Z(X) T-even (gauge-invariant derivative)
D7 (x) =P (x,01x) T-odd (soft-gluon or gluonic pole)

36




¢

Operator structure in TMD case

B Transverse moments can be expressed in these particular collinear
multi-parton twist-3 correlators (which are not suppressed!)

(B 0= 177, 78 o =F -l
T-even T-odd
T-even T-even T-odd
o ;
[¢§amu I(x)= cp;z:‘(x)_'_cézg(”zq,g;((x)+C:;U';;(<P§£(x)+d>gg(x)) ]
Tr(GG y) Tr(GG) Tr (v
m CVcalculable U yle! A b AL
gluonic pole oY) o] o) @O+
factors cy ol 3 .
54/ I 0 -
ol o 0 .
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Distributions versus fragmentation

m Operators:
U (pl p)~ (PIFOU,, , W) P)

m Operators:
Ak 1k)

~ 2(01WE 1K, X )K,X 1 §(0)10)

[ AZ(x)=A"(£,01)=0 ]

out state

QU (x)=BE (x)+ CV T DL (x)

T-even  T-odd (gluonic pole) Agwl(x) = Ag(x)

[CIJg(x):CIJ';“(x,OIx):tO] T-even operator

combination, but still T-odd

functinncl
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The next step: (full) TMDs of definite rank

m Collecting righ

DYI(x, p,) = D(x, p)+ C 7 p, ) (x, )+ Cld o py DL (5, p7)

+

+

m Depending on

t moments gives expansion into full TMDs of definite rank

@ p)+CY T, B (2, p7)
pm@;’a(x, )+

spin of hadron, only a finite number needed

m Example: quarks in an unpolarized target needs only 2 functions

dx,p) = (

T-even

Ed

) s ’

7®%(x,p2) = | ik (x, pj)%
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‘ Summarizing quark TMDs up to spin 1/2 targets

GLUONIC POLE RANK

0 1 2 3
O(axpr eV dg nﬂCg’p],m Dacee rr‘ngG(L DeGeee
) Y ®g 6o mClL. ®q cage |-
) 1C g o .
(6] .

PDFs FOR SPIN 0 HADRONS | PDFs FOR SPIN 1/2 HADRONS]|

h i [ I P E I Rl
| qir, hip,
+ [n
PFFs FOR SPIN 0 HADRONS | [PEFs FOR SPIN 1/2 HADRONS]
D, [ | [G, [ |
H; | Gir, Hi, Dir |
+ Hir
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Where do we stand with TMDs (schematic)

m Collinear high-energy processes

k..

[ 0(x,,2,,2) =@ ()@ (1)) £.65, (x,%,,2)A" (2) ]
; N

collinear

R
N

| ‘Parton' collinear
i color factor : x-sectit:\ PFF for
! i partonk

41
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Where do we stand with TMDs (schematic)

¢

m Collinear high-energy processes:

[ 0(x,,2,,2) =@ ()& (x)) £.65, (x,%,,2)A" (2) ]

k..

® Azimuthal dependences:

[O'(X],xz,z,qr) = e N xy, p, )@ DMV (x, p ) 6

k...

V(X],xz,z)Ak(z,k,)]

gauge-link process-
dependent color factors

42




Where do we stand with TMDs (schematic)

¢

m Collinear high-energy processes:

[ 0(x,,2,,2) =@ ()@ (1)) £.65, (%%, A" (2) ]

k..

m Azimuthal dependences:

[O'(x],xz,z,qr)= fcw,u:1 CID"U‘(C”(xz,pZT) ®<I>"U3‘C”(xl,pﬂ)6‘m

k..

V(X],xz,z)Ak(z,k,)]

d)"L';(X. P =8 pp)+ pydy () + G i (e, p) + C PP g (e pp) ..

; ;
{ /

¢

gau;je-link rank-1 TMDs £ ' rank-1 rank-2
dependent TMD (T-even)  9MONCPOle | ETQSTMDs  ETQS TMDs
f | M facor | (T-odd) (T-even)
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Where do we stand with TMDs (schematic)

m Collinear high-energy processes:

[ 0(x,,2,,2) =@ ()@ (1)) £.65, (%%, A" (2) ]

k..

® Azimuthal dependences:

[o’(x],xz,z,qr)= fcw,u:1 CID"U‘(C”(xz,pZT) ®<I>"U3‘C”(xl,pﬂ)6‘m

k...

V(X],xz,z)Ak(z,k,)]

N, pr) =0, pp)+ By (. p)+ C I (e )+ Cg pr? i (v pr) +-

T G T G

A (k) = A (2, k) +KEAS (k) + kP AL (2,k7) + ..

rank-1 TMDs rank-2 TMDs
(T-even and odd) (T-even and odd)

universal TMD
PFF for parton i
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Conclusion with (potential) rewards

@

m (Generalized) universality via operator product expansion extends
the well-known collinear distributions (including polarization, 3 for
quarks and 2 for gluons) with novel TMD functions of definite rank.
The rank m is coupled to cos(m¢) and sin(m¢) azimuthal
asymmetries. Highest rank is 2(Syagron*Sparton)-

TMDs encode aspects of hadronic structure, e.g. spin-orbit
correlations, such as T-odd transversely polarized quarks or T-even
longitudinally polarized gluons in an unpolarized hadron (thus
opening possible use for precision probing at the LHC)

The TMDs appear in cross sections with specific calculable
coefficients that depend on the flow of color in the tree-level
diagrams:

gluon + gluon - colorless (distinguish CP+ from CP- Higgs)

gluon + gluon > quark-antiquark pair.

Factorization studies (scaling) for TMDs are still in an early phase.
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Thank you
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