

Graphene: High-energy physics in a solid-state nano-system <u>Marcos H.D. Guimarães</u>

Physics of Nanodevices, Zernike Institute for Advanced Materials University of Groningen (RuG), The Netherlands

- What is graphene?
- Electronic properties of graphene
- Klein tunnelling
- Pseudo-magnetic fields
- Conclusions

Graphene

Graphite

physics of nanodevices

Published Items in Each Year

From: Web of Science (http://apps.isiknowledge.com/)

What is graphene?

Electronic Properties

k_v

$$\hat{H} = \hbar v_{\rm F} \begin{pmatrix} 0 & k_{\rm X} - ik_{\rm Y} \\ k_{\rm X} + ik_{\rm Y} & 0 \end{pmatrix} = \hbar v_{\rm F} \, \mathbf{\sigma} \cdot \mathbf{k} \qquad \mathbf{E} = \pm v_{\rm F} \, \hbar \mathbf{k}$$

$$v_{\rm F} \sim c/300 = 10^6 \, \mathrm{m.s^{-1}}$$

Klein Tunnelling

University of Groningen Zernike Institute for Advanced Materials

Klein Tunnelling

University of Groningen Zernike Institute for Advanced Materials

Klein Tunnelling

physics of nanodevices

High Magnetic Fields

University of Groningen Zernike Institute for Advanced Materials

In space...

Neutron stars can reach more than **1 MT!**

Back on Earth...

We struggle to get

45 T (static) or 100 T (pulsed)

- Spin-transport (long spin relaxation times)
- Gas sensors, can detect up to a single molecule
- High electron mobility (>500 000 cm²/V.s)
- Tunable band-gap for bilayer graphene
- VERY fast transistors (155 GHz)

Thanks for your attention!

Questions?

Visit us at: www.nanodevices.nl

