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Plan

1. What I mean by qualitative effects.

Quantum bifurcations

Reorganization of band structure

2. Quantum, semi-quantum, and classical models

Simple molecular examples

Energy-reflection symmetry

Quaternionic models

Real symmetric Hamiltonians

3. Solid state analogy.

Topological phases of matter.

4. Mathematical correspondence.

R, C, H trinity.

3



4SiH

ν

ν

2

4

1100

1000

 900

2724211815129630 30
 800

−1

E
(cm     )

J

2J − 1

2J − 3

2J + 1

2J + 9

2J − 1

8

6

Reduced rovibrational energy as a function of rotational quantum numberJ for

lowest vibrational bandsν4 (F2 symmetry type) andν2 (E symmetry type) of

SiH4 tetrahedral molecule (Td point symmetry group).
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Upper branch ofν3 and lower branch of2ν4 bands of CF4 molecule withTd point

symmetry group of the equilibrium configuration.
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Energy level representationin

Energy (E) - Angular momentum (J)

coordinates corrected with the scalar functionE(J) to see better the band

structure and the evolution of internal structure of bands as a function of a

strict integral of motionJ .

Qualitative features to explain:

i) Rotational clusters (6-fold, 8-fold, 12-fold quasidegenerate)

ii) Modification of cluster structure (appearance of 12-fold cluster asJ

increases).

iii) Number of energy levels in a band:

2J + 1 + ∆, ??? ∆ ???

iv) Rules for redistribution of energy levels between bands.
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Qualitative phenomena

Quantum bifurcations, cluster structure. [1]

Quantum monodromy and its generalizations. [2]

Energy bands and their rearrangements.[3]

[1] Ann. Phys. (N.Y.)184, 1-32 (1988); Phys. Rep.341, 85-171 (2001); In Meyers, Robert (Ed.)

Encyclopedia of Complexity and Systems Science, Springer New York 2009, Part 17, Pages 7135-7154.

[2] Phys. Lett. A256, 235-44 (1999); Phys. Rev. Lett.93, 024302-1-4 (2004); Ann. Henri Poincare.7,

1099–1211 (2006); Ann.Phys. (N.Y)322, 164–200 (2007).

[3] Europhys. Lett.6, 573-78 (1988); Phys. Rev. Lett.85, 960-963 (2000); Phys. Lett. A302, 242-252

(2002); Ann. Phys. (N.Y)326, 3013-3066 (2011); Acta Appl. Math.20, 153-175 (2012); Phys. Lett. A

3772481-2486 (2013) ; Theoret. Chem. Accounts,133, 1501 (2014); Acta Appl. Math,137, 97-121

(2015).
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General idea of qualitative approach

• To study a family of objects/models depending on a number of
control parameters(external or internal).

• To find characteristics which are defined for almost all values of
control parameters and arepiece-wise constant.

This allows to split the space of control parameters into disjoint regions
by a codimension one boundary (wall). Qualitative modifications under

control parameter variation are associated withwall-crossing.

We use the notion “wall-crossing” just to show that for the studied molecular

examples the qualitative description can be regarded as oneconcrete realization of

general “wall-crossing“ formalisma.

a see M. Kontsevich, Y. Soibelman, Wall-crossing structuresin Donaldson-Thomas invariants, integrable
systems and Mirror Symmetry. LNM, in press; arXiv:1303.3253

D.Gaiotto, G.W. Moore, A. Neitzke, Wall-crossing, Hitchinsystems, and the WKB approximation, Adv.

Math. 234, 239-403 (2013)
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Construction of semi-quantum model

“Slow” variables - classical.

“Fast” variables - quantum.

Classical phase space -baseof the fiber bundle.

Hamiltonian -matrix symboldefined over classical phase space.

Eigenvectors of the Hamiltonians -fibersof vector bundle.

Topological invariants of eigenbundles -Chern numbers, ....
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Dimensionof matrix Hamiltonian -number of bands- rank of vector

bundle.

Bands areisolatedif there areno degeneracy pointsof eigenvalues.

Eigenline bundles are characterized by topological invariant -Chern

number.

Degeneracy points are responcible for modification of the band structure

and of the set of Chern numbers.

Symmetry should be taken into account
(spatial, dynamical, time-reversal, ...)
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Energy bands and corresponding Chern numbers for SiH4 molecular

example.

Band J ∼ 8 J ∼ 8 J ∼ 30 J ∼ 30

Numb. lev. Chern numb. Numb. lev. Chern.numb.

ν2 (upper) 2J − 3 −4 2J − 3 −4

ν2 (lower) 2J + 5 +4 2J − 1 −2

ν4 (upper) 2J + 3 +2 2J + 1 0

ν4 (middle) 2J + 1 0 2J + 9 +8

ν4 (lower) 2J − 1 −2 2J − 1 −2
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Simplest molecular example of band rearrangement.

Spin-rotation coupling in presence of magnetic field.

H(t) = tN · S + (1 − t)Sz. (1)

Two limiting cases

i) t ∼ 0 : spin-rotation coupling is negligible; interaction of a spin with

magnetic field is essential.

ii) t ∼ 1 : spin-rotation coupling is essential; interaction of a spin with

magnetic field is negligible.

AlthoughH(t) is SO(2) invariant, the phenomenon is

topological.
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Redistribution of quantum energy levels between energy bands along with

variation of control parametert. The model Hamiltonian is written for a

fixed value of the angular momentum.

E

t

E

t

Two possible physical interpretations:

Left : Redistributing level - “edge state“ - is assigned to lower orto upper band

for all control parameter values except fort0 - “zero energy“ state (red point).

Right : Redistributing level changes its character from “regular“to “edge“ and

back to “regular “ states (red - “edge state“).
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λ λ+ +

λ λ− −

Schematic representation of the evolution of eigenvalues of a local linearized

model Hamiltonian (of A symmetry class) in a two-level approximation along

with variation of a control parametert crossing the boundary of the iso-Chern

domain. Exceptional points (blue points) in the chosen representation are shown.

T. Iwai, B. Zhilinskii, Qualitative features of the rearrangement of molecular energy spectra from a

“wall-crossing” perspective. Phys. Lett. A 377 (2013) 2481-2486
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Redistribution of quantum energy levels between energy bands in isolated

molecules as a function of the integral of motion,N .

Quantum numberN labels irreps of the dynamical symmetry group of the problemand

takes discrete values. The total number of energy levels fortwo bands depends onN .
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Schematic view of the joint spectrum of two commuting observablesE, j

and its evolution as a function of control parametert.

E

j

t<0

0

E

j

t=0

0

E

j

t>0

0

Two isolated energy bands (each has internal structure described by two

quantum numbers) transform into two 2D-bands connected by

1D-isthmus.

New qualitative structure : “isthmus”.
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Hamiltonian with energy-reflection symmetry
(pseudo-symmetry)

Hquantum =





A + δLz + dL2
z γ̄L−

γL+ −A − δLz − dL2
z



 (2)

= 2Sz ⊗
(

A + δLz + dL2
z

)

+ γS− ⊗ L+ + γ̄S+ ⊗ L−.

Let K be the complex conjugation andσ1 = σ−1
1 =





0 1

1 0



,

then if δ = 0

(σ1K)Hquantum(σ1K)−1 = −Hquantum
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Evolution of the pattern of quantum energy levels of the Hamiltonian (2) under

variation of control parameterA. Blue and red lines correspond to two

one-dimensional blocks associated with quantum levels going from one band to

another. Figures are done for the following choice of phenomenological

parameters of the Hamiltonian (2): (a)L = 5, γ = 1 + I, d = 1, δ = 0.

(b) L = 5, γ = 1 + 2I, d = 1, δ = −3.
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Quantum energy level pattern forS = 1 problem. (a) General view of the

quantum energy level pattern. (b) Correlation diagram showing the redistribution

of energy levels between theA → −∞ and theA → ∞ limits. Only the levels

which change bands under control parameterA variation are shown.
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−∞ ← A A→∞ −∞← A A→∞

Correlation diagram forS = 2. The bands are symbolized by a horizontal thick

lines. Only the levels which change bands under control parameterA variation are

shown. The levels belonging to invariant subspacesJz = −L − Sz and

Jz = L + Sz (Sz = S, S − 1, ... − S + 1) are shown in separate sub-figures, left

and right respectively.
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Semi-quantum model

Semi-quantum Hamiltonian with slow variablesxk restricted by

x2
1 + x2

2 + x2
3 = 1.

Hsemi−quantum =





A + δx3 + dx2
3 γ̄(x1 − ix2)

γ(x1 + ix2) −A − δx3 − dx2
3



 , (3)

The two eigenvalues

λ± = ±

√

(A + δx3 + dx2
3)

2
+ |γ|2 (x2

1 + x2
2). (4)

Energy reflection symmetry is valid for anyδ

iσ2Hsemi−quantum(−iσ2) = −Hsemi−quantum (5)

with iσ2 =

0

@

0 1

−1 0

1

A.
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Ch=0Ch=0 Ch=+1

Ch=0 Ch=0

Ch=0Ch=0

Ch= −1(a) (b)

Schematic representation of the evolution of the two eigenline bundles of

Hsemi−quantum Hamiltonian.

(a) Case ofδ ≥ 0. (b) Case ofδ = 0.

For δ ≤ 0 the Chern numbers Ch= ±1 should be interchanged.
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Completely classical version

Classical Hamiltonian

Hclassical = 2Sz(A + δLz + dL2
z) + 2γrτ − 2γiσ, (6)

with τ = SxLx + SyLy andσ = SxLy − SyLx is defined overS2 × S2

phase space. On account of SO(2) symmetry the quantityJz = Lz + Sz

is an intergal of motion.

The space of orbits is defined by

τ2 ≤
(

|S|
2
− S2

z

)(

|L|
2
− L2

z

)

. (7)
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Lz Sz

τ

− |L|

|L| |S|

− |S|

− |L| |S|

|L| |S|

Space of orbits sliced byJz = const planes. Black curves: intersection of

the space of orbits which contains only regular points. Red curves:

intersection of the space of orbits which contains a singular point.
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A→ −∞ A ∼ 0 A→∞

Image of the energy–momentum map for HamiltonianHclassical (6) with δ ≈ 0,

d ≈ 0, γi ≈ 0. The blue arrows show the displacement of the critical values with

increasingA. (a) Limit A → −∞. (b) A ∼ 0. (c) Limit A → ∞.
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V

−L−S
zJ

−L+S L−S L+S 
Volume of the reduced phase spaceV as function of the integral of motionJz for

a classical dynamic system defined over theS2
× S2 classical phase space in the

presence of axial symmetry.
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(a) (b)

A→ −∞

A ≈ 0

A→∞

Evolution of the image of the energy–momentum map for HamiltonianHclassical

together with the lattice of quantum states forS = 1/2 (left) andS = 1 (right).

Yellow hatching shows the subset of quantum states redistributing between energy

bands under the variation of the control parameter.
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A = −55 A = −40 A = −25 A = −10 A = 5

Evolution of the joint spectrum of the Hamiltonian (2) withL = 5,

γ = 1 + 2i, d = 1, δ = 3. The different subfigures correspond

respectively to differentA values withA = −40 andA = −10 cases

being associated with “wall-crossing”.
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A=  0.0, L=16.0, S= 5.0

Quantum state lattice for Hamiltonian (2) withδ = d = A = 0, γ = 1, L = 16, S = 5.

Two elementary monodromy defect of the quantum state lattice become visible by following

the evolution of an elementary cell of the lattice along a path surrounding each elementary

defect (green and magenta cells).
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Semi-quantum models for time-reversal systems with half-integer
spin

AII symmetry class =Semi-quantum model for two Kramers
doublets

2 × 2 hyperhermitian quaternionic matrix with zero trace




g a + bi + cj + dk

a − bi − cj − dk −g



 ; (a, b, c, d, g ∈ R). (8)

We can always choose trace to be zero by appropriate choice ofzero energy.

Quaternions can be represented by matrices:

i =

 

i 0

0 −i

!

= iσz; j =

 

0 1

−1 0

!

= iσy; k =

 

0 i

i 0

!

= iσx,

whereσx, σy, σz are standard Pauli matrices, satisfying the rules

i2 = j2 = k2 = ijk = −1. (9)
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2 × 2 quaternionic matrix can be rewritten as4 × 4-matrix over real




















g 0 a + ib c + id

0 g −c + id a − ib

a − ib −c − id −g 0

c − id a + ib 0 −g





















. (10)

with eigenvalues

E1,2;3,4 = ±
√

a2 + b2 + c2 + d2 + g2. (11)

For semi-quantum modelwe consider coefficientsa, b, c, d, g as real

functionsover classical phase space.
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Codimension of degeneracy of two eigenvalues is 5.

Generic semi-quantum Hamiltonian with four-dimensional classical

phase space (base of the fiber bundle) has no degeneracy points.

A one-control-parameter family of semi-quantum Hamiltonians with

four-dimensional base space typically has isolated degeneracy points.

Formation of degeneracy points is a
topological phenomenon.
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Possible physical examples for “slow“ base space
for two doublet electronic states

• Two vibrational degrees of freedom -R4.

• Two vibrational polyads formed by three degenerate vibrations -

CP 2.

• Vibrational polyads formed by two doubly degenerate vibrations -

S2 × S2.

• Internal structure of Rydberg shells -S2 × S2.
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Simple quaternionic semi-quantum Hamiltonian

HQmodel
=

p2
1 + q2

1 + p2
2 + q2

2

2

+















G 0 q1 + ip1 q2 + ip2

0 G −(q2 + ip2)
∗ (q1 + ip1)

∗

(q1 + ip1)
† −(q2 + ip2)

∗† −G 0

(q2 + ip2)
† (q1 + ip1)

∗† 0 −G
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Quantum versions of quaternionic model Hamiltonian

H = (a+
1 a1 + a+

2 a2 + 1) + Hs(a1, a2, a
+
1 , a+

2 ); (12)

Aq.1(a, a+) =





α1a1 + α2a2 β1a1 + β2a2

−β1a1 − β2a2 α1a1 + α2a2



 ,

Aq.3(a, a+) =





α1a1 + α2a2 β1a
+
1 + β2a

+
2

−β1a
+
1 − β2a

+
2 α1a1 + α2a2



 ,

αk, βk ∈ C, k = 1, 2.
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Redistribution of energy levels as a function of control parameterD for Quaternionic model

Hamiltonian with finite block structure.
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Redistribution of energy levels as a function of control parameterG for Quaternionic model

HamiltonianH3 with four infinite blocks. Left figure is forA andB blocks possessing

degenerate eigenvalues. Right figure is forC andD blocks also having identical

eigenvalues. Patterns on the left and on the right figures arerelated throughG ↔ −G

transformation.
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Two quantum states with one reality condition

2 × 2 matrix overS2 classical phase space after imposing one reality

conditionH∗ = H takes the form (AI symmetry class) :

H(real) =





h11(θ, φ) h12(θ, φ)

h12(θ, φ) −h11(θ, φ)



 , (13)

wherehij are real functions. The codimension of degeneracy of two

eigenvalues is two. Two conditions should be satisfied

h11(θ, φ) = 0; h12(θ, φ) = 0. (14)

Generically, a system of two equations depending on two variables

possesses isolated solutions. Small deformation of equations does not

change the number of solution but only slightly modifies their position.
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Evolution of degeneracy points for one parameter family of real

symmetric Hamiltonians.

Two curves schematically represent solutions ofh11 = 0 andh12 = 0

conditions. Intersection of these two curve corresponds todegeneracy

point for real symmetric Hamiltonian.
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Evolution of two energy surfaces associated with formationof degeneracy

points for one parameter family of real symmetric Hamiltonians.
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Quantum spectrum of two band semi-quantum model with two degenerate

zero-energy stateswhich arerobustunder small perturbation respecting

the symmetry. Similar energy pattern is discussed for topological

insulators,[G.Montamnaux, F. Piechon, J.-N.Fuchs, M.O.Goerbig, Merging of Dirac points in a

two-dimensional crystal. Phys.Rev. B80, 153412 (2009), see next slide].
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Topological insulators and topological superconductors point of view

A. P. Schnyder, S. Ryu, A. Furusaki, A. W.W. Ludwig, Classification of topological insulators and
superconductors in three spatial dimensions. Phys. Rev. B78, 195125 (2008).

A. Kitaev, Periodic table for topological insulators and superconductors. Advances In Theoretical
Physics: Landau Memorial Conference Chernogolokova (Russia), AIP Conf. Proc.113422-30 (2009).

B.A. Bernevig,Topological insulators and topological superconductors.Princeton Univ. Press, 2013.

Important notions : “edge states”

“topologically protected“

“topological phases of matter“
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Electronic states for two-dimensional solid as function onthe Brillouin
cell. [M.Z.Hasan, C.L. Kane, Rev.Mod.Phys.82, 3045 (2010).]
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Topological insulator classification

There are ten generic symmetry classes of single-particle Hamiltonians.

The Hamiltonians are classified according to their behaviorunder:

• time-reversal symmetryT ,

• charge conjugation (or particle-hole) symmetryC, as well as

• “chiral“ (or “sublattice“) symmetryS.

T HT −1 = H; T 2 = 1 or T 2 = −1; (antiunitary operator)

CHC−1 = −H; C2 = 1 or C2 = −1; (antiunitary operator)

S = T C ; (unitary operator)
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Cartan label T C S Hamiltonian

A (unitary) 0 0 0 U(N )

AI (orthogonal) +1 0 0 U(N )/O(N )

AII (symplectic) −1 0 0 U(2N )/Sp(2N )

AIII (ch. unit.) 0 0 1 U(N + M )/U(N)× U(M )

BDI (ch. orth.) +1 +1 1 O(N + M )/O(N)× O(M )

CII (ch. sympl.) −1 −1 1 Sp(N + M )/Sp(N)× Sp(M )

D (BdG) 0 +1 0 SO(2N )

C (BdG) 0 −1 0 Sp(2N )

DIII (BdG) −1 +1 1 SO(2N )/U(N )

CI (BdG) +1 −1 1 Sp(2N )/U(N )
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Topological insulators exibiting merging of Dirac points.
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Non-formal analogy between real, complex, quaternionic theories

V.I. Arnol’d. Selecta Math., 1995,1, 1-19; In ”Mathematics: Frontiers and Perspectives, AMS, 2000

Real Complex Quaternionic

R C H

RP n
CP n

HP n

RP 1 = S1 CP 1 = S2 HP 1 = S4

Symmetric matrix Hermitian matrix Hyperhermitian

O(n) U(n) Sp(n)

Codim. of deg. Codim. of deg. Codim. of deg.

2 3 5

Stiefel-Whitney Chern Pontryagin

Von Neumann-Wigner

eigenvalues repulsion

Quantum Hall effect

Berry phase
???

48



Band redistribution for finite particle systems

Comparison of A, AI, AII symmetry classes.

Symm. class Matrix
Codimension

of degeneracy

Characteristic

class

AI
symmetric

over real
2 Stiefel-Whitney

A
hermitian

over complex
3 Chern

AII
hyperhermitian

over quaternions
5

Pontryagin

(second Chern)
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