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A theory attempting to explain the quantum mechanical nature of
the laws of physics at small scales, starting from non-quantum
mechanical dynamics

typically:

a set of cogwheels

Cogwheels will be time-reversal-invariant. At a later stage of this
theory, information loss is introduced, leading to a new, and
natural arrow of time.

But we begin with time-reversible situations . . .
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A fundamental ingredient of a generic theory: a finite, periodic
system: the Cogwheel Model:
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This is an example of a classical system that can be mapped onto
a purely quantum mechanical system.

The example is of course trivial, but can easily be generalised to
much more complex models . . .

The converse can also be done:

Consider a quantum mechanical system, and try to construct
operators that are beables:

Beables are sets of operators that have the property that the
time evolution law is a pure permutation:

U(ti ) = Pi

or, in the Heisenberg notation:

[O(t1), O(t2)] = 0 ∀(t1, t2) ∈ some large set of times t i
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Examples:

• quantum harmonic oscillator =
classical point moving around circle

• chiral Dirac fermion =
infinite plane moving with speed of light

• the bulk of a quantized superstring =
string on a lattice in transverse space
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The harmonic oscillator.

ϕ↔
Unitary

transformation

↔
Continuum

limit

Quantum Oscillator ↔ Classical periodic system
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Massless, chiral, non interacting “neutrinos” are deterministic:

Second-quantised theory: H = −i ψ† σi∂i ψ
First quantised theory: H = σipi
d
dtO(t) = i [O(t), H]

Beables {Oop
i } = {p̂, s, r} :

p̂ ≡ ±~p/|p| , s ≡ p̂ · ~σ , r ≡ 1
2(p̂ · ~x + ~x · p̂) .

|p̂| = 1 , s = ±1 , −∞ < r <∞

d
dt p̂ = 0 , ds

dt = 0 , d
dt r = s

These beables form a complete set
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The neutrino sheet.
Beables: {p̂, s, r}

The eigenstates of
these operators span
the entire Hilbert
space.

Introducing operators
in this basis, one can
reconstruct the usual
operators ~x , ~p , σi
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Interesting mathematical physics:

xi = p̂i (r − i

pr
) + εijk p̂j L

ont
k /pr + (1)

1

2pr

(
−ϕi s1 + θi s2 +

p̂3√
1− P̂2

3

ϕi s3
)

θi and ϕi are beables, functions of q̂ .
Lontk are generators of rotations of the sheet,
s3 = s , s1 and s2 are spin flip operators.

The Hamiltonian of the first-quantised theory has no ground state,
but, just as in Dirac’s theory, the second quantised theory does
have a ground state
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1st quantization

Hamiltonian with cut-off
H|ψi 〉 = hi j |ψj〉
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2nd quantization

Hamiltonian with cut-off

H|ψi 〉 = hi j |ψj〉 −→ H = ψi hi j ψj

Improves locality!
And H is bounded from below!
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This we can do with non-interacting neutrinos, not yet with other
fields.

Future strategy: in principle, it may be possible to construct such a
theory by replacing other 1st quantized particle systems with 2nd

quantized ones.
Add interactions as small corrections: perturbative QFT.

Strategy for obtaining a CA that may lead to a perturbative QFT;

Note, that perturbative QFT are not mathematically perfect, but
they can serve as satisfactory descriptions of a SM for elementary
particles . . .
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Why it is all wrong: Bell’s theorem

III
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In the Bell experiment, at t = t0, one must demand that Alice’s
setting a and Bob’s setting b, and the source c , have
3 - body correlations of the form

W (a, b, c) ∝ | sin(2(a + b)− 4c)| (or worse)
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But Alice and Bob have free will. How can actions of free will be
correlated to S at time t = t2 � t3?

Answer: They don’t have such free will: superdeterminism.

The Mouse-dropping objection:

Alice and Bob
count the mouse droppings . . .

W

x 2π0

The Mousedropping function, | sin(2(a + b)− 4c)|
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Or, Alice and Bob may register fluctuations coming from quasars
QA and QB .

Correlations in spacelike directions are very strong everywhere
W

x 2π0
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Conspiracy ?

The ontology conservation law:

If we apply the “true” Schrödinger equation, we can be sure that:

- Original basis elements (ontic states) evolve into
Original basis elements (ontic states) ;

- Superpositions evolve into superpositions.

- Neither Alice nor Bob can ever modify their state (applying
“free will”) to turn an ontic state into a superposition.

We should not worry about ‘conspiracy’. Ontology is conserved
just like (or better than) angular momentum

Nature’s ontological states are strongly correlated
(that’s not in contradiction with causality and/or locality)
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Problem with locality:

U(n δt) = e−iH n δt →

Hδt = i logU = π +
∑∞

n=1
1

in δt

(
U(n δt)− U(−n δt)

)
.

Except: vacuum state:
U(nδt)|0〉 = |0〉 → U(nδt) = 1 .
But: H|0〉 = 0: contradiction

For states close to the vacuum, the
expansion converges badly.

But, U(nδt) connects n neighbours. 0 π 2πω
0

π

2π

H

This means that, if H =
∑

~x H(~x),
H(~x1), H(~x2)] 9 0 when |~x1 − ~x2| 6= 0

Classical locality, but no quantum locality ! Possible remedy:
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Second quantization: like with the
neutrinos: first construct a classical
theory for single particles.
Now, we allow E > 0 and E < 0
solutions.
The expansion for H then converges fast.

−π 0 πω

H

π

−π

Therefore, the 1-particle Hamiltonian is local. To get positivity of
the Hamiltonian, we second quantize: negative energy states are
holes of antiparticles (as in Dirac).

Take interactions to be weak; they are obtained by adding local
disturbances in the deterministic evolution.

This may lead to effectively renormalizable QFT. The perturbation
expansion does not converge, but the expansion parameter may
turn out to be sufficiently small.
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Time reversibility

So-far, theory was time reversible. The evolution operator U(t) is
then a pure permutator, and its representation in Hilbert space is
unitary ⇒ The Hamiltonian is hermitean.

Black holes: non time-reversibility? Break down of unitarity ?
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The generic, finite, deterministic, time reversible model:
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The generic, finite, deterministic, time non reversible model:
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The info-equivalence classes act as local gauge equivalence classes

Maybe they are local gauge equivalence classes!

By construction, these equivalence classes are time-reversible.

So, in spite of info-loss, the quantum theory will be time-reversible:
PCT ivariance in QFT.

The classical, ontological states are not time reversible!

Therefore, the classical states carry an explicit arrow of time!
The quantum theory does not!
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But conceivable, one first has to add the gravitational force . . .

Changes everything !

Gravitation as a local gauge theory for diffeomorphisms.

Could diffeomorphism classes be info equiv classes?

YES!

Such a theory may help explain why the cosm coupling const, Λ,
is small, and why space is globally flat (k ≈ 0):

“The ontological theory has a flat coordinate frame”
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