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form.
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> At the same time € — 0 is the semiclassical limit for the slow degrees
of freedom.

» Concrete realizations of this setting are for example particles with
spin, molecules and Bloch electrons in weak fields.
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Let e : R2" — R be an isolated eigenvalue band of H, i.e.

H(q, p) Po(q, p) = e(q,p) Po(q,p)  for all (q,p) € R*",
and Py : R?" — L, (Hs) the corresponding spectral projection.

Expectation:

States in the range of ﬁo € Lga(H) behave “semiclassical” with respect to
the classical Hamiltonian function e(q, p).

or
Pocf3e Py ~ Pyaodf Py
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. Superadiabatic subspaces

Adiabatic perturbation theory:! R
Under suitable technical conditions there exists an orthogonal projection P
with symbol

such that

Hence, H is almost block-diagonal with respect to P,

~

H=PHP +(1—P)H(1—P)+0(>)

while for /’50 one only has

o~

H=PoHPo+(1—Po)H(1—Py)+O(c)

Helffer-Sjéstrand '89, Emmrich-Weinstein '96, Nenciu-Sordoni '03,
Panati-Spohn-T. '03



2. Superadiabatic subspaces

Goal in the following:

Expand contributions from superadiabatic subspaces to equilibrium expec-
tation values

(P A(A)3) = s ( [, a.p)f(ela. p)) dap + o<s))

or to Heisenberg operators

ol

Pefltge iHEP = /33/03‘;/3 + O(e)
in powers of € < 1 and express as much as possible in terms of a

e-dependent classical Hamiltonian system.
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3. A modified Hamiltonian system

The family of projections Po(q, p) defines a line-bundle over the classical
phase space R?” that inherits a connection from the trivial vector bundle
Rzn X Hf,

VB = PV,
the Berry connection.
The components of the associated curvature form w(®) = wfjo)dz" NdzZ are

w(2) = 2t (Po(2) 0,Po(2) 0Pol2))

ij

The components of the “quantum metric’ g = g;jdz'®dz’ are

gii(z) = Retry, (Po(z) 0iPo(2) ajPo(z)) .

Finally define the skew-symmetric matrix

Mj(z) = Im try, (a,-Po(z) (H(z) — e(2)) a,-PO(z)) .
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3. A modified Hamiltonian system

With an isolated simple energy band e of an adiabatic slow-fast system we
associate the classical Hamiltonian

WV (z) = e(z) — %trRzn (J M(2))
and the symplectic form

QW = J 4+ ew®,

(0 E
“\-E o)

This Hamiltonian system appeared already in Littlejohn-Flynn '91 in the
context of Bohr-Sommerfeld quantization for coupled wave equations.

where
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4. Results: first order

Theorem (Stiepan, Teufel; CMP 320, 2013)

Under suitable technical conditions it holds that

(P f(A)a) = ﬁ ( / W a(2) £(HO(2)) + O(€2||a||L1)>

and

Hﬁ (e“qé Fe it _ Weyl® (ao ¢§1))) P H = 0(£%)

uniformly on bounded time intervals.

Here A is the Liouville measure of Q1) and ®{*) the Hamiltonian flow.
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4. What about the next order?

Eugene Wigner, Phys. Rev. 40, 1932:
On the Quantum Correction For Thermodynamic Equilibrium

For h(q,p) = 3|p|*> + V(q) he showed that

1
(2me)n

Tr (77 3) ~ / dqdp a(q, p)e PP (14 c2c(q, p))
Rz"

where

B3
c(a.p) = 55 (IVV(@)P + (. VV(@)p)se — 3 :92V(q))
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4. What about the next order?
For more general Hamiltonians and distributions
h:R> R, h=h(x,—ieVy), f:R—C,

it holds by definition of the Weyl quantization rule that

Tr (3 f@)) = (2;E)n /Rzn dqdp a(q. p) f*(q,p),

where (by standard pseudo-differential calculus)
¢ := Symb (f(ﬁ)) =foh+e’h+O()
with
(=1)°

=1 | "(h) ol (0505 h)(9qh)” (9ph)* + £ (h) {h, h},
lo+Bl=2




5. Results: second order
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5. Results: second order
Theorem (Gaim, Teufel; 2016)

There is a classical Hamiltonian h(® = h(1) 4 c2h, and a symplectic form
Q@ = QM) 4 £2Q, such that for all observables a and distributions f
(satisfying suitable technical conditions)

(P f(A)a) = (2736)n ( /R @ a(2) (F(H()) +2Q(2))

+0(Eal))

where A\ is the Liouville measure of Q(2).
The “quantum corrections” are
Q = 3f'(e)|lJ Vel
— trpas (JV (f'(€) g JVe))
+ Wigner terms
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5. The “superadiabatic” Hamiltonian system

The classical Hamiltonian is uniquely fixed by the following

Lemma There is a unique scalar semiclassical symbol h(e, g, p) such that

PAP—PHP+0().

The symplectic form is constructed as follows:

There is a “natural” pointwise projection M(e,z) = Py(z) + O(e) related
to the Moyal projection P(e, z) = Py(z) + O(e) defining a line-bundle over
phase space such that the modified Berry connection
vl =nv
has the curvature form
w=w®+edS.
The “superadiabatic” symplectic form is then

Q=J+ew.



6. Application: Fermions in periodic media

In tight binding models for a single particle in a periodic background the
Hamiltonian fibers in crystal-momentum representation as

(H)(k) = H(k)ib(k), where ) € L2(B,CV) and H : B, — £(CV)

with B the Brillouin torus.



6. Application: Fermions in periodic media

In tight binding models for a single particle in a periodic background the
Hamiltonian fibers in crystal-momentum representation as

(H)(k) = H(k)(k), where ¢ € L2(B,C") and H : B, — £(CN)
with B the Brillouin torus.

When adding external non-periodic potentials A : RY — R? and ¢ : RY —
R the Hamiltonian changes into

H = H(k — A(ieVx)) + ¢(ieVi) Inxn -



6. Application: Fermions in periodic media

In tight binding models for a single particle in a periodic background the
Hamiltonian fibers in crystal-momentum representation as

(H)(k) = H(k)(k), where ¢ € L2(B,C") and H : B, — £(CN)
with B the Brillouin torus.

When adding external non-periodic potentials A : RY — R? and ¢ : RY —
R the Hamiltonian changes into

H = H(k — A(ieVx)) + ¢(ieVi) Inxn -

So we are in the general setting discussed before where the phase space is
now T*B instead of R2",



6. Application: Fermions in periodic media

In tight binding models for a single particle in a periodic background the
Hamiltonian fibers in crystal-momentum representation as

(H)(k) = H(k)(k), where ¢ € L2(B,C") and H : B, — £(CN)
with B the Brillouin torus.

When adding external non-periodic potentials A : RY — R? and ¢ : RY —
R the Hamiltonian changes into

H = H(k — A(ieVx)) + ¢(ieVi) Inxn -

So we are in the general setting discussed before where the phase space is
now T*B instead of R2",

We can now use the semiclassical formulas to compute currents and free
energies for systems of non-interacting fermions in equilibrium states.
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6. Application: Fermions in periodic media

Quantum Hall current at zero temperature:

Let d = 2, include a constant magnetic field By with rational flux in the
periodic Hamiltonian and set A(x) = 2b A x and ¢(x) := & - x. Take
f(x) := (s )(x) to be the Fermi-Dirac distribution with Fermi energy

and consider the current operator J := i[,‘fl,x].Then

j(b,€) —Tr(f(H ) ZTr(Pf (H) 7)

1 m
= AW 40
o Z [t ©)
" [ Vi(en(k) + ebm,(k)) + eE+w® (k)
. ul Lt ee®0) (14 ebw®(k))dk

gL
= O (k)dk € Z—7Z
(27r)2 ;/}Bwn (k)dk € o

Note that our theorems also hold for the phase space T*B with nontrivial
topology where eigen-bundles can be non-trivializable.
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6. Application: Fermions in periodic media

The free energy of a such a Fermi gas at positive temperature is

p(b, B, 1) := B~ Trln (1 + ef,@(ﬁ"f,i)) .

We can write also this as a sum of contributions from all Bloch bands:
1
plb:fop) = BZ/ ['” <1+e‘6<h("2)(“‘“>> + Qn(k)} AD(dk) + O(b?)
— JB

and for the zero field susceptibility one finds that

S(B,u) = 9 p(b, B, 1)lb=0

_ %Z/B {f(en(k)) A2,n(k)
+ f'(en(k)) (mp(k) wa(k) + ha,n(k))
17 (ea(k) (Smn (K2 + [ Ven () 12,0

~ieweu( Ve (k)(Te)i(k)) |

where f(x) = In(1 + exp(—3(x — u))).



7. Conclusion

Thanks for your attention!



