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1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

Ĥ = H(x ,−iε∇x)

given by the Weyl quantization of an operator valued symbol

H : R2n → Lsa(Hf) acting on H = L2(Rn
x)⊗Hf = L2(Rn

x ;Hf) .
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I At the same time ε→ 0 is the semiclassical limit for the slow degrees
of freedom.

I Concrete realizations of this setting are for example particles with
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the classical Hamiltonian function e(q, p).
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P̂ 0 e
iĤ t

ε â e−iĤ t
ε P̂ 0 ≈ P̂ 0 â ◦ Φe
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2. Superadiabatic subspaces

Adiabatic perturbation theory:1

Under suitable technical conditions there exists an orthogonal projection P̂
with symbol

P(q, p) = P0(q, p) +O(ε)

such that
[P̂ , Ĥ ] = O(ε∞) .

Hence, Ĥ is almost block-diagonal with respect to P̂ ,

Ĥ = P̂ Ĥ P̂ + (1− P̂ )Ĥ (1− P̂ ) +O(ε∞)

while for P̂0 one only has

Ĥ = P̂ 0Ĥ P̂ 0 + (1− P̂ 0)Ĥ (1− P̂ 0) +O(ε)

1Helffer-Sjöstrand ’89, Emmrich-Weinstein ’96, Nenciu-Sordoni ’03,
Panati-Spohn-T. ’03
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2. Superadiabatic subspaces

Goal in the following:

Expand contributions from superadiabatic subspaces to equilibrium expec-
tation values

Tr
(
P̂ f (Ĥ ) â

)
=

1

(2πε)n

(∫
R2n

a(q, p) f (e(q, p)) dqdp + O(ε)

)
or to Heisenberg operators

P̂ eiĤ
t
ε â e−iĤ

t
ε P̂ = P̂ â ◦ Φe

t P̂ + O(ε)

in powers of ε� 1 and express as much as possible in terms of a

ε-dependent classical Hamiltonian system.



3. A modified Hamiltonian system

The family of projections P0(q, p) defines a line-bundle over the classical
phase space R2n that inherits a connection from the trivial vector bundle
R2n ×Hf ,

∇B := P0∇ ,
the Berry connection.

The components of the associated curvature form ω(0) = ω
(0)
ij dz i ∧ dz j are

ω
(0)
ij (z) = 2 Im trHf

(
P0(z) ∂iP0(z) ∂jP0(z)

)
.

The components of the “quantum metric” g = gij dz
i⊗dz j are

gij(z) := Re trHf

(
P0(z) ∂iP0(z) ∂jP0(z)

)
.

Finally define the skew-symmetric matrix

Mij(z) = Im trHf

(
∂iP0(z)

(
H(z)− e(z)

)
∂jP0(z)

)
.
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3. A modified Hamiltonian system

With an isolated simple energy band e of an adiabatic slow-fast system we
associate the classical Hamiltonian

h(1)(z) := e(z)− ε

2
trR2n

(
J M(z)

)
and the symplectic form

Ω(1) := J + ε ω(0) ,

where

J =

(
0 En

−En 0

)
.

This Hamiltonian system appeared already in Littlejohn-Flynn ’91 in the
context of Bohr-Sommerfeld quantization for coupled wave equations.
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4. Results: first order

Theorem (Stiepan, Teufel; CMP 320, 2013)

Under suitable technical conditions it holds that

Tr
(
P̂ f (Ĥ ) â

)
=

1

(2πε)n

(∫
R2n

dλ(1) a(z) f
(
h(1)(z)

)
+ O(ε2‖a‖L1 )

)

and

∥∥∥P̂ (
eiĤ

t
ε â e−iĤ

t
ε −Weylε

(
a ◦ Φ

(1)
t

))
P̂
∥∥∥ = O(ε2)

uniformly on bounded time intervals.

Here λ(1) is the Liouville measure of Ω(1) and Φ
(1)
t the Hamiltonian flow.
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t
ε −Weylε

(
a ◦ Φ

(1)
t

))
P̂
∥∥∥ = O(ε2)

uniformly on bounded time intervals.

Here λ(1) is the Liouville measure of Ω(1) and Φ
(1)
t the Hamiltonian flow.



4. What about the next order?

Eugene Wigner, Phys. Rev. 40, 1932:
On the Quantum Correction For Thermodynamic Equilibrium

For h(q, p) = 1
2 |p|

2 + V (q) he showed that

Tr
(
e−βĥ â

)
≈ 1

(2πε)n

∫
R2n

dqdp a(q, p) e−βh(q,p)
(
1 + ε2c(q, p)

)
where

c(q, p) =
β3

24

(
|∇V (q)|2 + 〈p,∇2V (q)p〉Rn − 3

β tr∇2V (q)
)



4. What about the next order?

Eugene Wigner, Phys. Rev. 40, 1932:
On the Quantum Correction For Thermodynamic Equilibrium

For h(q, p) = 1
2 |p|

2 + V (q) he showed that

Tr
(
e−βĥ â
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4. What about the next order?

For more general Hamiltonians and distributions

h : R2n → R , ĥ = h(x ,−iε∇x) , f : R→ C ,

it holds by definition of the Weyl quantization rule that

Tr
(
â f (ĥ )

)
=

1

(2πε)n

∫
R2n

dqdp a(q, p) f ε(q, p) ,

where (by standard pseudo-differential calculus)

f ε := Symb
(
f (ĥ )

)
= f ◦ h + ε2 f2 +O(ε3)

with

f2 = 1
12

f ′′′(h)
∑
|α+β|=2

(−1)β

α!β!
(∂αq ∂

β
p h)(∂qh)β(∂ph)α + f ′′(h) {h, h}2
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5. Results: second order

Theorem (Gaim, Teufel; 2016)

There is a classical Hamiltonian h(2) = h(1) + ε2h2 and a symplectic form
Ω(2) = Ω(1) + ε2Ω2 such that for all observables a and distributions f
(satisfying suitable technical conditions)

Tr
(
P̂ f (Ĥ ) â

)
=

1

(2πε)n

(∫
R2n

dλ(2) a(z)
(
f (h(2)(z)) + ε2Q(z)

)
+ O(ε3‖a‖L1 )

)
where λ(2) is the Liouville measure of Ω(2).

The “quantum corrections” are

Q = 1
2 f
′′(e) ‖J∇e‖2

g

− trR2n

(
J∇

(
f ′(e) g J∇e

))
+ Wigner terms
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5. The “superadiabatic” Hamiltonian system

The classical Hamiltonian is uniquely fixed by the following

Lemma There is a unique scalar semiclassical symbol h(ε, q, p) such that

P̂ Ĥ P̂ = P̂ ĥ P̂ +O(ε∞) .

The symplectic form is constructed as follows:

There is a “natural” pointwise projection Π(ε, z) = P0(z) + O(ε) related
to the Moyal projection P(ε, z) = P0(z) +O(ε) defining a line-bundle over
phase space such that the modified Berry connection

∇Π = Π∇
has the curvature form

ω = ω(0) + εdS .

The “superadiabatic” symplectic form is then

Ω := J + εω .
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6. Application: Fermions in periodic media

In tight binding models for a single particle in a periodic background the
Hamiltonian fibers in crystal-momentum representation as

(Ĥ ψ)(k) = H(k)ψ(k) , where ψ ∈ L2(B,CN) and H : Bk → L(CN)

with B the Brillouin torus.

When adding external non-periodic potentials A : Rd → Rd and φ : Rd →
R the Hamiltonian changes into

Ĥ = H(k − A(iε∇k)) + φ(iε∇k)1N×N .

So we are in the general setting discussed before where the phase space is
now T ∗B instead of R2n.

We can now use the semiclassical formulas to compute currents and free
energies for systems of non-interacting fermions in equilibrium states.
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6. Application: Fermions in periodic media
Quantum Hall current at zero temperature:

Let d = 2, include a constant magnetic field B0 with rational flux in the
periodic Hamiltonian and set A(x) = 1

2b ∧ x and φ(x) := E · x . Take
f (x) := 1(−∞,µ)(x) to be the Fermi-Dirac distribution with Fermi energy µ

and consider the current operator Ĵ := i
ε [Ĥ , x ].

Then

j(b, E) := Tr
(
f (Ĥ ) Ĵ

)
=

m∑
n=1

Tr
(
P̂nf (Ĥ ) Ĵ

)
=

1

(2π)2

m∑
n=1

∫
B
jn(k)dλ(1)

n +O(ε)

=
1

(2π)2ε

m∑
n=1

∫
B

∇k

(
en(k) + εbmn(k)

)
+ εE⊥ω(0)

n (k)

1 + εb ω
(0)
n (k)

(1 + εb ω(0)
n (k))dk
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6. Application: Fermions in periodic media

The free energy of a such a Fermi gas at positive temperature is

p(b, β, µ) := β−1Tr ln
(

1 + e−β
(
Ĥ

b−µ
))
.

We can write also this as a sum of contributions from all Bloch bands:

p(b, β, µ) =
1

β

∑
n

∫
B

[
ln

(
1 + e−β

(
h(2)
n (k)−µ

))
+ Qn(k)

]
λ(2)
n (dk) + O(b3)

and for the zero field susceptibility one finds that

S(β, µ) := ∂2
b p(b, β, µ)|b=0

=
2

β

∑
n

∫
B

[
f (en(k))λ2,n(k)

+ f ′(en(k))
(
mn(k)ωn(k) + h2,n(k)

)
+ f ′′(en(k))

(
1
2mn(k)2 + ‖∇en(k)⊥‖2

gn(k)

− 1
24εjkεkl(∇

2en)jk(k)(∇2en)li (k)
)]

dk

where f (x) = ln(1 + exp(−β(x − µ))).
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7. Conclusion

Thanks for your attention!


