Quantum Geometry in
 Semiclassical Approximations

Stefan Teufel
Mathematisches Institut der Universität Tübingen

Groenewold Symposium
October 2016, Groningen.

1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

$$
\widehat{H}=H\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right)
$$

given by the Weyl quantization of an operator valued symbol

$$
H: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right) \quad \text { acting on } \quad \mathcal{H}=L^{2}\left(\mathbb{R}_{x}^{n}\right) \otimes \mathcal{H}_{\mathrm{f}}=L^{2}\left(\mathbb{R}_{x}^{n} ; \mathcal{H}_{\mathrm{f}}\right)
$$

1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

$$
\widehat{H}=H\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right)
$$

given by the Weyl quantization of an operator valued symbol

$$
H: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right) \quad \text { acting on } \quad \mathcal{H}=L^{2}\left(\mathbb{R}_{x}^{n}\right) \otimes \mathcal{H}_{\mathrm{f}}=L^{2}\left(\mathbb{R}_{x}^{n} ; \mathcal{H}_{\mathrm{f}}\right) .
$$

- Systems composed of slow degrees of freedom with configuration space \mathbb{R}_{x}^{n} and fast degrees of freedom with state space \mathcal{H}_{f} are of this form.

1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

$$
\widehat{H}=H\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right)
$$

given by the Weyl quantization of an operator valued symbol

$$
H: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right) \quad \text { acting on } \quad \mathcal{H}=L^{2}\left(\mathbb{R}_{x}^{n}\right) \otimes \mathcal{H}_{\mathrm{f}}=L^{2}\left(\mathbb{R}_{x}^{n} ; \mathcal{H}_{\mathrm{f}}\right) .
$$

- Systems composed of slow degrees of freedom with configuration space \mathbb{R}_{x}^{n} and fast degrees of freedom with state space \mathcal{H}_{f} are of this form.
- The small dimensionless parameter $\varepsilon \ll 1$ controls the separation of time scales and the asymptotic limit $\varepsilon \rightarrow 0$ corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple.

1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

$$
\widehat{H}=H\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right)
$$

given by the Weyl quantization of an operator valued symbol

$$
H: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right) \quad \text { acting on } \quad \mathcal{H}=L^{2}\left(\mathbb{R}_{x}^{n}\right) \otimes \mathcal{H}_{\mathrm{f}}=L^{2}\left(\mathbb{R}_{x}^{n} ; \mathcal{H}_{\mathrm{f}}\right)
$$

- Systems composed of slow degrees of freedom with configuration space \mathbb{R}_{x}^{n} and fast degrees of freedom with state space \mathcal{H}_{f} are of this form.
- The small dimensionless parameter $\varepsilon \ll 1$ controls the separation of time scales and the asymptotic limit $\varepsilon \rightarrow 0$ corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple.
- At the same time $\varepsilon \rightarrow 0$ is the semiclassical limit for the slow degrees of freedom.

1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

$$
\widehat{H}=H\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right)
$$

given by the Weyl quantization of an operator valued symbol

$$
H: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right) \quad \text { acting on } \quad \mathcal{H}=L^{2}\left(\mathbb{R}_{x}^{n}\right) \otimes \mathcal{H}_{\mathrm{f}}=L^{2}\left(\mathbb{R}_{x}^{n} ; \mathcal{H}_{\mathrm{f}}\right)
$$

- Systems composed of slow degrees of freedom with configuration space \mathbb{R}_{x}^{n} and fast degrees of freedom with state space \mathcal{H}_{f} are of this form.
- The small dimensionless parameter $\varepsilon \ll 1$ controls the separation of time scales and the asymptotic limit $\varepsilon \rightarrow 0$ corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple.
- At the same time $\varepsilon \rightarrow 0$ is the semiclassical limit for the slow degrees of freedom.
- Concrete realizations of this setting are for example particles with spin, molecules and Bloch electrons in weak fields.

1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

$$
\widehat{H}=H\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right)
$$

given by the Weyl quantization of an operator valued symbol

$$
H: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right) \quad \text { acting on } \quad \mathcal{H}=L^{2}\left(\mathbb{R}_{x}^{n}\right) \otimes \mathcal{H}_{\mathrm{f}}=L^{2}\left(\mathbb{R}_{x}^{n} ; \mathcal{H}_{\mathrm{f}}\right)
$$

Let $e: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be an isolated eigenvalue band of H, i.e.

$$
H(q, p) P_{0}(q, p)=e(q, p) P_{0}(q, p) \quad \text { for all }(q, p) \in \mathbb{R}^{2 n},
$$

and $P_{0}: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right)$ the corresponding spectral projection.

1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

$$
\widehat{H}=H\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right)
$$

given by the Weyl quantization of an operator valued symbol

$$
H: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right) \quad \text { acting on } \quad \mathcal{H}=L^{2}\left(\mathbb{R}_{x}^{n}\right) \otimes \mathcal{H}_{\mathrm{f}}=L^{2}\left(\mathbb{R}_{x}^{n} ; \mathcal{H}_{\mathrm{f}}\right) .
$$

Let $e: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be an isolated eigenvalue band of H, i.e.

$$
H(q, p) P_{0}(q, p)=e(q, p) P_{0}(q, p) \quad \text { for all }(q, p) \in \mathbb{R}^{2 n},
$$

and $P_{0}: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right)$ the corresponding spectral projection.

Expectation:

States in the range of $\widehat{P}_{0} \in \mathcal{L}_{\text {sa }}(\mathcal{H})$ behave "semiclassical" with respect to the classical Hamiltonian function $e(q, p)$.

1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

$$
\widehat{H}=H\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right)
$$

given by the Weyl quantization of an operator valued symbol

$$
H: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right) \quad \text { acting on } \quad \mathcal{H}=L^{2}\left(\mathbb{R}_{x}^{n}\right) \otimes \mathcal{H}_{\mathrm{f}}=L^{2}\left(\mathbb{R}_{x}^{n} ; \mathcal{H}_{\mathrm{f}}\right)
$$

Let $e: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be an isolated eigenvalue band of H, i.e.

$$
H(q, p) P_{0}(q, p)=e(q, p) P_{0}(q, p) \quad \text { for all }(q, p) \in \mathbb{R}^{2 n},
$$

and $P_{0}: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right)$ the corresponding spectral projection.

Expectation:

States in the range of $\widehat{P}_{0} \in \mathcal{L}_{\text {sa }}(\mathcal{H})$ behave "semiclassical" with respect to the classical Hamiltonian function $e(q, p)$.
E.g.

$$
\operatorname{Tr}\left(\widehat{P}_{0} f(\widehat{H}) \hat{a}\right) \approx \frac{1}{(2 \pi \varepsilon)^{n}} \int_{\mathbb{R}^{2 n}} a(q, p) f(e(q, p)) \mathrm{d} q \mathrm{~d} p
$$

1. Adiabatic slow-fast systems

Consider a quantum system with a Hamiltonian

$$
\widehat{H}=H\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right)
$$

given by the Weyl quantization of an operator valued symbol

$$
H: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right) \quad \text { acting on } \quad \mathcal{H}=L^{2}\left(\mathbb{R}_{x}^{n}\right) \otimes \mathcal{H}_{\mathrm{f}}=L^{2}\left(\mathbb{R}_{x}^{n} ; \mathcal{H}_{\mathrm{f}}\right)
$$

Let $e: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be an isolated eigenvalue band of H, i.e.

$$
H(q, p) P_{0}(q, p)=e(q, p) P_{0}(q, p) \quad \text { for all }(q, p) \in \mathbb{R}^{2 n},
$$

and $P_{0}: \mathbb{R}^{2 n} \rightarrow \mathcal{L}_{\mathrm{sa}}\left(\mathcal{H}_{\mathrm{f}}\right)$ the corresponding spectral projection.

Expectation:

States in the range of $\widehat{P}_{0} \in \mathcal{L}_{\text {sa }}(\mathcal{H})$ behave "semiclassical" with respect to the classical Hamiltonian function $e(q, p)$.
or

$$
\widehat{P}_{0} \mathrm{e}^{\mathrm{i} \widehat{H} \frac{t}{\varepsilon}} \widehat{a} \mathrm{e}^{-\mathrm{i} \widehat{H} \frac{t}{\varepsilon}} \widehat{P}_{0} \approx \widehat{P}_{0} \widehat{a \circ \Phi_{t}^{e}} \widehat{P}_{0}
$$

2. Superadiabatic subspaces

Adiabatic perturbation theory: ${ }^{1}$

Under suitable technical conditions there exists an orthogonal projection \widehat{P} with symbol

$$
P(q, p)=P_{0}(q, p)+\mathcal{O}(\varepsilon)
$$

such that

$$
[\widehat{P}, \widehat{H}]=\mathcal{O}\left(\varepsilon^{\infty}\right)
$$

[^0]
2. Superadiabatic subspaces

Adiabatic perturbation theory: ${ }^{1}$
Under suitable technical conditions there exists an orthogonal projection \widehat{P} with symbol

$$
P(q, p)=P_{0}(q, p)+\mathcal{O}(\varepsilon)
$$

such that

$$
[\widehat{P}, \widehat{H}]=\mathcal{O}\left(\varepsilon^{\infty}\right)
$$

Hence, \widehat{H} is almost block-diagonal with respect to \widehat{P},

$$
\widehat{H}=\widehat{P} \widehat{H} \widehat{P}+(1-\widehat{P}) \widehat{H}(1-\widehat{P})+\mathcal{O}\left(\varepsilon^{\infty}\right)
$$

while for \widehat{P}_{0} one only has

$$
\widehat{H}=\widehat{P}_{0} \widehat{H} \widehat{P}_{0}+\left(1-\widehat{P}_{0}\right) \widehat{H}\left(1-\widehat{P}_{0}\right)+\mathcal{O}(\varepsilon)
$$

[^1]
2. Superadiabatic subspaces

Goal in the following:

Expand contributions from superadiabatic subspaces to equilibrium expectation values

$$
\operatorname{Tr}(\widehat{P} f(\widehat{H}) \hat{a})=\frac{1}{(2 \pi \varepsilon)^{n}}\left(\int_{\mathbb{R}^{2 n}} a(q, p) f(e(q, p)) \mathrm{d} q \mathrm{~d} p+\mathcal{O}(\varepsilon)\right)
$$

or to Heisenberg operators

$$
\widehat{P} \mathrm{e}^{\mathrm{i} \widehat{H} \frac{t}{\varepsilon}} \widehat{a} \mathrm{e}^{-\mathrm{i} \widehat{H} \frac{t}{\varepsilon}} \widehat{P}=\widehat{P} \widehat{a \circ \Phi_{t}^{e}} \widehat{P}+\mathcal{O}(\varepsilon)
$$

in powers of $\varepsilon \ll 1$ and express as much as possible in terms of a ε-dependent classical Hamiltonian system.

3. A modified Hamiltonian system

The family of projections $P_{0}(q, p)$ defines a line-bundle over the classical phase space $\mathbb{R}^{2 n}$ that inherits a connection from the trivial vector bundle $\mathbb{R}^{2 n} \times \mathcal{H}_{\mathrm{f}}$,

$$
\nabla^{\mathrm{B}}:=P_{0} \nabla,
$$

the Berry connection.

3. A modified Hamiltonian system

The family of projections $P_{0}(q, p)$ defines a line-bundle over the classical phase space $\mathbb{R}^{2 n}$ that inherits a connection from the trivial vector bundle $\mathbb{R}^{2 n} \times \mathcal{H}_{\mathrm{f}}$,

$$
\nabla^{\mathrm{B}}:=P_{0} \nabla,
$$

the Berry connection.
The components of the associated curvature form $\omega^{(0)}=\omega_{i j}^{(0)} \mathrm{d} z^{i} \wedge \mathrm{~d} z^{j}$ are

$$
\omega_{i j}^{(0)}(z)=2 \operatorname{Im} \operatorname{tr}_{\mathcal{H}_{f}}\left(P_{0}(z) \partial_{i} P_{0}(z) \partial_{j} P_{0}(z)\right) .
$$

3. A modified Hamiltonian system

The family of projections $P_{0}(q, p)$ defines a line-bundle over the classical phase space $\mathbb{R}^{2 n}$ that inherits a connection from the trivial vector bundle $\mathbb{R}^{2 n} \times \mathcal{H}_{\mathrm{f}}$,

$$
\nabla^{\mathrm{B}}:=P_{0} \nabla,
$$

the Berry connection.
The components of the associated curvature form $\omega^{(0)}=\omega_{i j}^{(0)} \mathrm{d} z^{i} \wedge \mathrm{~d} z^{j}$ are

$$
\omega_{i j}^{(0)}(z)=2 \operatorname{Im} \operatorname{tr}_{\mathcal{H}_{f}}\left(P_{0}(z) \partial_{i} P_{0}(z) \partial_{j} P_{0}(z)\right) .
$$

The components of the "quantum metric" $g=g_{i j} \mathrm{~d} z^{i} \otimes \mathrm{~d} z^{j}$ are

$$
g_{i j}(z):=\operatorname{Retr}_{\mathcal{H}_{f}}\left(P_{0}(z) \partial_{i} P_{0}(z) \partial_{j} P_{0}(z)\right) .
$$

3. A modified Hamiltonian system

The family of projections $P_{0}(q, p)$ defines a line-bundle over the classical phase space $\mathbb{R}^{2 n}$ that inherits a connection from the trivial vector bundle $\mathbb{R}^{2 n} \times \mathcal{H}_{\mathrm{f}}$,

$$
\nabla^{\mathrm{B}}:=P_{0} \nabla,
$$

the Berry connection.
The components of the associated curvature form $\omega^{(0)}=\omega_{i j}^{(0)} \mathrm{d} z^{i} \wedge \mathrm{~d} z^{j}$ are

$$
\omega_{i j}^{(0)}(z)=2 \operatorname{Im} \operatorname{tr}_{\mathcal{H}_{f}}\left(P_{0}(z) \partial_{i} P_{0}(z) \partial_{j} P_{0}(z)\right) .
$$

The components of the "quantum metric" $g=g_{i j} \mathrm{~d} z^{i} \otimes \mathrm{~d} z^{j}$ are

$$
g_{i j}(z):=\operatorname{Retr}_{\mathcal{H}_{f}}\left(P_{0}(z) \partial_{i} P_{0}(z) \partial_{j} P_{0}(z)\right) .
$$

Finally define the skew-symmetric matrix

$$
M_{i j}(z)=\operatorname{Im} \operatorname{tr}_{\mathcal{H}_{f}}\left(\partial_{i} P_{0}(z)(H(z)-e(z)) \partial_{j} P_{0}(z)\right) .
$$

3. A modified Hamiltonian system

With an isolated simple energy band e of an adiabatic slow-fast system we associate the classical Hamiltonian

$$
h^{(1)}(z):=e(z)-\frac{\varepsilon}{2} \operatorname{tr}_{\mathbb{R}^{2 n}}(J M(z))
$$

and the symplectic form

$$
\Omega^{(1)}:=J+\varepsilon \omega^{(0)},
$$

where

$$
J=\left(\begin{array}{cc}
0 & E_{n} \\
-E_{n} & 0
\end{array}\right) .
$$

3. A modified Hamiltonian system

With an isolated simple energy band e of an adiabatic slow-fast system we associate the classical Hamiltonian

$$
h^{(1)}(z):=e(z)-\frac{\varepsilon}{2} \operatorname{tr}_{\mathbb{R}^{2 n}}(J M(z))
$$

and the symplectic form

$$
\Omega^{(1)}:=J+\varepsilon \omega^{(0)},
$$

where

$$
J=\left(\begin{array}{cc}
0 & E_{n} \\
-E_{n} & 0
\end{array}\right) .
$$

This Hamiltonian system appeared already in Littlejohn-Flynn ' 91 in the context of Bohr-Sommerfeld quantization for coupled wave equations.

4. Results: first order

Theorem (Stiepan, Teufel; CMP 320, 2013)
Under suitable technical conditions it holds that

$$
\operatorname{Tr}(\widehat{P} f(\widehat{H}) \widehat{a})=\frac{1}{(2 \pi \varepsilon)^{n}}\left(\int_{\mathbb{R}^{2 n}} \mathrm{~d} \lambda^{(1)} a(z) f\left(h^{(1)}(z)\right)+\mathcal{O}\left(\varepsilon^{2}\|a\|_{L^{1}}\right)\right)
$$

4. Results: first order

Theorem (Stiepan, Teufel; CMP 320, 2013)
Under suitable technical conditions it holds that

$$
\operatorname{Tr}(\widehat{P} f(\widehat{H}) \widehat{a})=\frac{1}{(2 \pi \varepsilon)^{n}}\left(\int_{\mathbb{R}^{2 n}} \mathrm{~d} \lambda^{(1)} a(z) f\left(h^{(1)}(z)\right)+\mathcal{O}\left(\varepsilon^{2}\|a\|_{L^{1}}\right)\right)
$$

and

$$
\left\|\widehat{P}\left(\mathrm{e}^{\mathrm{i} \hat{H} \frac{t}{\varepsilon}} \widehat{a} \mathrm{e}^{-\mathrm{i} \widehat{H} \frac{t}{\varepsilon}}-\operatorname{Weyl}^{\varepsilon}\left(a \circ \Phi_{t}^{(1)}\right)\right) \widehat{P}\right\|=\mathcal{O}\left(\varepsilon^{2}\right)
$$

uniformly on bounded time intervals.
Here $\lambda^{(1)}$ is the Liouville measure of $\Omega^{(1)}$ and $\Phi_{t}^{(1)}$ the Hamiltonian flow.

4. What about the next order?

4. What about the next order?

Eugene Wigner, Phys. Rev. 40, 1932:
On the Quantum Correction For Thermodynamic Equilibrium

4. What about the next order?

Eugene Wigner, Phys. Rev. 40, 1932:

On the Quantum Correction For Thermodynamic Equilibrium

For $h(q, p)=\frac{1}{2}|p|^{2}+V(q)$ he showed that

$$
\operatorname{Tr}\left(\mathrm{e}^{-\beta \widehat{h}} \hat{a}\right) \approx \frac{1}{(2 \pi \varepsilon)^{n}} \int_{\mathbb{R}^{2 n}} \mathrm{~d} q \mathrm{~d} p a(q, p) \mathrm{e}^{-\beta h(q, p)}\left(1+\varepsilon^{2} c(q, p)\right)
$$

where

$$
c(q, p)=\frac{\beta^{3}}{24}\left(|\nabla V(q)|^{2}+\left\langle p, \nabla^{2} V(q) p\right\rangle_{\mathbb{R}^{n}}-\frac{3}{\beta} \operatorname{tr} \nabla^{2} V(q)\right)
$$

4. What about the next order?

For more general Hamiltonians and distributions

$$
h: \mathbb{R}^{2 n} \rightarrow \mathbb{R}, \quad \widehat{h}=h\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right), \quad f: \mathbb{R} \rightarrow \mathbb{C}
$$

4. What about the next order?

For more general Hamiltonians and distributions

$$
h: \mathbb{R}^{2 n} \rightarrow \mathbb{R}, \quad \widehat{h}=h\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right), \quad f: \mathbb{R} \rightarrow \mathbb{C}
$$

it holds by definition of the Weyl quantization rule that

$$
\operatorname{Tr}(\hat{a} f(\widehat{h}))=\frac{1}{(2 \pi \varepsilon)^{n}} \int_{\mathbb{R}^{2 n}} \mathrm{~d} q \mathrm{~d} p a(q, p) f^{\varepsilon}(q, p)
$$

4. What about the next order?

For more general Hamiltonians and distributions

$$
h: \mathbb{R}^{2 n} \rightarrow \mathbb{R}, \quad \widehat{h}=h\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right), \quad f: \mathbb{R} \rightarrow \mathbb{C}
$$

it holds by definition of the Weyl quantization rule that

$$
\operatorname{Tr}(\widehat{a} f(\widehat{h}))=\frac{1}{(2 \pi \varepsilon)^{n}} \int_{\mathbb{R}^{2 n}} \mathrm{~d} q \mathrm{~d} p a(q, p) f^{\varepsilon}(q, p)
$$

where (by standard pseudo-differential calculus)

$$
f^{\varepsilon}:=\operatorname{Symb}(f(\widehat{h}))
$$

4. What about the next order?

For more general Hamiltonians and distributions

$$
h: \mathbb{R}^{2 n} \rightarrow \mathbb{R}, \quad \widehat{h}=h\left(x,-\mathrm{i} \varepsilon \nabla_{x}\right), \quad f: \mathbb{R} \rightarrow \mathbb{C}
$$

it holds by definition of the Weyl quantization rule that

$$
\operatorname{Tr}(\widehat{a} f(\widehat{h}))=\frac{1}{(2 \pi \varepsilon)^{n}} \int_{\mathbb{R}^{2 n}} \mathrm{~d} q \mathrm{~d} p a(q, p) f^{\varepsilon}(q, p)
$$

where (by standard pseudo-differential calculus)

$$
f^{\varepsilon}:=\operatorname{Symb}(f(\widehat{h}))=f \circ h+\varepsilon^{2} f_{2}+\mathcal{O}\left(\varepsilon^{3}\right)
$$

with

$$
f_{2}=\frac{1}{12}\left(f^{\prime \prime \prime}(h) \sum_{|\alpha+\beta|=2} \frac{(-1)^{\beta}}{\alpha!\beta!}\left(\partial_{q}^{\alpha} \partial_{p}^{\beta} h\right)\left(\partial_{q} h\right)^{\beta}\left(\partial_{p} h\right)^{\alpha}+f^{\prime \prime}(h)\{h, h\}_{2}\right)
$$

5. Results: second order

Theorem (Gaim, Teufel; 2016)
There is a classical Hamiltonian $h^{(2)}=h^{(1)}+\varepsilon^{2} h_{2}$ and a symplectic form $\Omega^{(2)}=\Omega^{(1)}+\varepsilon^{2} \Omega_{2}$ such that for all observables a and distributions f (satisfying suitable technical conditions)

$$
\begin{array}{r}
\operatorname{Tr}(\widehat{P} f(\widehat{H}) \hat{a})=\frac{1}{(2 \pi \varepsilon)^{n}}\left(\int_{\mathbb{R}^{2 n}} \mathrm{~d} \lambda^{(2)} a(z)\left(f\left(h^{(2)}(z)\right)+\varepsilon^{2} Q(z)\right)\right. \\
\left.+\mathcal{O}\left(\varepsilon^{3}\|a\|_{L^{1}}\right)\right)
\end{array}
$$

where $\lambda^{(2)}$ is the Liouville measure of $\Omega^{(2)}$.

5. Results: second order

Theorem (Gaim, Teufel; 2016)
There is a classical Hamiltonian $h^{(2)}=h^{(1)}+\varepsilon^{2} h_{2}$ and a symplectic form $\Omega^{(2)}=\Omega^{(1)}+\varepsilon^{2} \Omega_{2}$ such that for all observables a and distributions f (satisfying suitable technical conditions)

$$
\begin{array}{r}
\operatorname{Tr}(\widehat{P} f(\widehat{H}) \hat{a})=\frac{1}{(2 \pi \varepsilon)^{n}}\left(\int_{\mathbb{R}^{2 n}} \mathrm{~d} \lambda^{(2)} a(z)\left(f\left(h^{(2)}(z)\right)+\varepsilon^{2} Q(z)\right)\right. \\
\left.+\mathcal{O}\left(\varepsilon^{3}\|a\|_{L^{1}}\right)\right)
\end{array}
$$

where $\lambda^{(2)}$ is the Liouville measure of $\Omega^{(2)}$.
The "quantum corrections" are

$$
\begin{aligned}
Q= & \frac{1}{2} f^{\prime \prime}(e)\|J \nabla e\|_{g}^{2} \\
& -\operatorname{tr}_{\mathbb{R}^{2 n}}\left(J \nabla\left(f^{\prime}(e) g J \nabla e\right)\right) \\
& + \text { Wigner terms }
\end{aligned}
$$

5. The "superadiabatic" Hamiltonian system

The classical Hamiltonian is uniquely fixed by the following
Lemma There is a unique scalar semiclassical symbol $h(\varepsilon, q, p)$ such that

$$
\widehat{P} \widehat{H} \widehat{P}=\widehat{P} \widehat{h} \widehat{P}+\mathcal{O}\left(\varepsilon^{\infty}\right) .
$$

5. The "superadiabatic" Hamiltonian system

The classical Hamiltonian is uniquely fixed by the following
Lemma There is a unique scalar semiclassical symbol $h(\varepsilon, q, p)$ such that

$$
\widehat{P} \widehat{H} \widehat{P}=\widehat{P} \widehat{h} \widehat{P}+\mathcal{O}\left(\varepsilon^{\infty}\right) .
$$

The symplectic form is constructed as follows:
There is a "natural" pointwise projection $\Pi(\varepsilon, z)=P_{0}(z)+\mathcal{O}(\varepsilon)$ related to the Moyal projection $P(\varepsilon, z)=P_{0}(z)+\mathcal{O}(\varepsilon)$ defining a line-bundle over phase space such that the modified Berry connection

$$
\nabla^{\square}=\Pi \nabla
$$

has the curvature form

$$
\omega=\omega^{(0)}+\varepsilon \mathrm{d} S
$$

The "superadiabatic" symplectic form is then

$$
\Omega:=J+\varepsilon \omega .
$$

6. Application: Fermions in periodic media

In tight binding models for a single particle in a periodic background the Hamiltonian fibers in crystal-momentum representation as

$$
(\widehat{H} \psi)(k)=H(k) \psi(k), \quad \text { where } \psi \in L^{2}\left(\mathbb{B}, \mathbb{C}^{N}\right) \text { and } H: \mathbb{B}_{k} \rightarrow \mathcal{L}\left(\mathbb{C}^{N}\right)
$$

with \mathbb{B} the Brillouin torus.

6. Application: Fermions in periodic media

In tight binding models for a single particle in a periodic background the Hamiltonian fibers in crystal-momentum representation as

$$
(\widehat{H} \psi)(k)=H(k) \psi(k), \quad \text { where } \psi \in L^{2}\left(\mathbb{B}, \mathbb{C}^{N}\right) \text { and } H: \mathbb{B}_{k} \rightarrow \mathcal{L}\left(\mathbb{C}^{N}\right)
$$

with \mathbb{B} the Brillouin torus.
When adding external non-periodic potentials $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $\phi: \mathbb{R}^{d} \rightarrow$ \mathbb{R} the Hamiltonian changes into

$$
\widehat{H}=H\left(k-A\left(\mathrm{i} \varepsilon \nabla_{k}\right)\right)+\phi\left(\mathrm{i} \varepsilon \nabla_{k}\right) \mathbf{1}_{N \times N} .
$$

6. Application: Fermions in periodic media

In tight binding models for a single particle in a periodic background the Hamiltonian fibers in crystal-momentum representation as

$$
(\widehat{H} \psi)(k)=H(k) \psi(k), \quad \text { where } \psi \in L^{2}\left(\mathbb{B}, \mathbb{C}^{N}\right) \text { and } H: \mathbb{B}_{k} \rightarrow \mathcal{L}\left(\mathbb{C}^{N}\right)
$$

with \mathbb{B} the Brillouin torus.
When adding external non-periodic potentials $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $\phi: \mathbb{R}^{d} \rightarrow$ \mathbb{R} the Hamiltonian changes into

$$
\widehat{H}=H\left(k-A\left(\mathrm{i} \varepsilon \nabla_{k}\right)\right)+\phi\left(\mathrm{i} \varepsilon \nabla_{k}\right) \mathbf{1}_{N \times N} .
$$

So we are in the general setting discussed before where the phase space is now $T^{*} \mathbb{B}$ instead of $\mathbb{R}^{2 n}$.

6. Application: Fermions in periodic media

In tight binding models for a single particle in a periodic background the Hamiltonian fibers in crystal-momentum representation as

$$
(\widehat{H} \psi)(k)=H(k) \psi(k), \quad \text { where } \psi \in L^{2}\left(\mathbb{B}, \mathbb{C}^{N}\right) \text { and } H: \mathbb{B}_{k} \rightarrow \mathcal{L}\left(\mathbb{C}^{N}\right)
$$

with \mathbb{B} the Brillouin torus.
When adding external non-periodic potentials $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $\phi: \mathbb{R}^{d} \rightarrow$ \mathbb{R} the Hamiltonian changes into

$$
\widehat{H}=H\left(k-A\left(\mathrm{i} \varepsilon \nabla_{k}\right)\right)+\phi\left(\mathrm{i} \varepsilon \nabla_{k}\right) \mathbf{1}_{N \times N} .
$$

So we are in the general setting discussed before where the phase space is now $T^{*} \mathbb{B}$ instead of $\mathbb{R}^{2 n}$.

We can now use the semiclassical formulas to compute currents and free energies for systems of non-interacting fermions in equilibrium states.

6. Application: Fermions in periodic media

Quantum Hall current at zero temperature:
Let $d=2$, include a constant magnetic field B_{0} with rational flux in the periodic Hamiltonian and set $A(x)=\frac{1}{2} b \wedge x$ and $\phi(x):=\mathcal{E} \cdot x$. Take $f(x):=\mathbf{1}_{(-\infty, \mu)}(x)$ to be the Fermi-Dirac distribution with Fermi energy μ and consider the current operator $\widehat{J}:=\frac{\mathrm{i}}{\varepsilon}[\widehat{H}, x]$.

6. Application: Fermions in periodic media

Quantum Hall current at zero temperature:
Let $d=2$, include a constant magnetic field B_{0} with rational flux in the periodic Hamiltonian and set $A(x)=\frac{1}{2} b \wedge x$ and $\phi(x):=\mathcal{E} \cdot x$. Take $f(x):=\mathbf{1}_{(-\infty, \mu)}(x)$ to be the Fermi-Dirac distribution with Fermi energy μ and consider the current operator $\widehat{J}:=\frac{\mathrm{i}}{\varepsilon}[\widehat{H}, x]$. Then
$j(b, \mathcal{E}):=\operatorname{Tr}(f(\widehat{H}) \hat{J})$

6. Application: Fermions in periodic media

Quantum Hall current at zero temperature:
Let $d=2$, include a constant magnetic field B_{0} with rational flux in the periodic Hamiltonian and set $A(x)=\frac{1}{2} b \wedge x$ and $\phi(x):=\mathcal{E} \cdot x$. Take $f(x):=\mathbf{1}_{(-\infty, \mu)}(x)$ to be the Fermi-Dirac distribution with Fermi energy μ and consider the current operator $\widehat{J}:=\frac{\mathrm{i}}{\varepsilon}[\widehat{H}, x]$. Then

$$
j(b, \mathcal{E}):=\operatorname{Tr}(f(\widehat{H}) \widehat{\jmath})=\sum_{n=1}^{m} \operatorname{Tr}\left(\widehat{P}_{n} f(\widehat{H}) \widehat{J}\right)
$$

6. Application: Fermions in periodic media

Quantum Hall current at zero temperature:
Let $d=2$, include a constant magnetic field B_{0} with rational flux in the periodic Hamiltonian and set $A(x)=\frac{1}{2} b \wedge x$ and $\phi(x):=\mathcal{E} \cdot x$. Take $f(x):=\mathbf{1}_{(-\infty, \mu)}(x)$ to be the Fermi-Dirac distribution with Fermi energy μ and consider the current operator $\widehat{\jmath}:=\frac{i}{\varepsilon}[\widehat{H}, x]$. Then

$$
\begin{gathered}
j(b, \mathcal{E}):=\operatorname{Tr}(f(\hat{H}) \hat{\jmath})=\sum_{n=1}^{m} \operatorname{Tr}\left(\hat{P}_{n} f(\hat{\mathcal{H}}) \hat{\jmath}\right) \\
=\frac{1}{(2 \pi)^{2}} \sum_{n=1}^{m} \int_{\mathbb{B}} j_{n}(k) d \lambda_{n}^{(1)}+\mathcal{O}(\varepsilon)
\end{gathered}
$$

6. Application: Fermions in periodic media

Quantum Hall current at zero temperature:
Let $d=2$, include a constant magnetic field B_{0} with rational flux in the periodic Hamiltonian and set $A(x)=\frac{1}{2} b \wedge x$ and $\phi(x):=\mathcal{E} \cdot x$. Take $f(x):=\mathbf{1}_{(-\infty, \mu)}(x)$ to be the Fermi-Dirac distribution with Fermi energy μ and consider the current operator $\widehat{J}:=\frac{i}{\varepsilon}[\widehat{H}, x]$. Then

$$
\begin{aligned}
& j(b, \mathcal{E}):=\operatorname{Tr}(f(\widehat{H}) \widehat{J})=\sum_{n=1}^{m} \operatorname{Tr}\left(\widehat{P}_{n} f(\widehat{H}) \widehat{J}\right) \\
& \quad=\frac{1}{(2 \pi)^{2}} \sum_{n=1}^{m} \int_{\mathbb{B}} j_{n}(k) \mathrm{d} \lambda_{n}^{(1)}+\mathcal{O}(\varepsilon) \\
& \quad=\frac{1}{(2 \pi)^{2} \varepsilon} \sum_{n=1}^{m} \int_{\mathbb{B}} \frac{\nabla_{k}\left(e_{n}(k)+\varepsilon b m_{n}(k)\right)+\varepsilon \mathcal{E}^{\perp} \omega_{n}^{(0)}(k)}{1+\varepsilon b \omega_{n}^{(0)}(k)}\left(1+\varepsilon b \omega_{n}^{(0)}(k)\right) \mathrm{d} k
\end{aligned}
$$

6. Application: Fermions in periodic media

Quantum Hall current at zero temperature:
Let $d=2$, include a constant magnetic field B_{0} with rational flux in the periodic Hamiltonian and set $A(x)=\frac{1}{2} b \wedge x$ and $\phi(x):=\mathcal{E} \cdot x$. Take $f(x):=\mathbf{1}_{(-\infty, \mu)}(x)$ to be the Fermi-Dirac distribution with Fermi energy μ and consider the current operator $\widehat{J}:=\frac{i}{\varepsilon}[\widehat{H}, x]$. Then

$$
\begin{aligned}
& j(b, \mathcal{E}):=\operatorname{Tr}(f(\widehat{H}) \widehat{J})=\sum_{n=1}^{m} \operatorname{Tr}\left(\widehat{P}_{n} f(\widehat{H}) \widehat{J}\right) \\
& \quad=\frac{1}{(2 \pi)^{2}} \sum_{n=1}^{m} \int_{\mathbb{B}} j_{n}(k) \mathrm{d} \lambda_{n}^{(1)}+\mathcal{O}(\varepsilon) \\
& \\
& =\frac{1}{(2 \pi)^{2} \varepsilon} \sum_{n=1}^{m} \int_{\mathbb{B}} \frac{\nabla_{k}\left(e_{n}(k)+\varepsilon b m_{n}(k)\right)+\varepsilon \mathcal{E}^{\perp} \omega_{n}^{(0)}(k)}{1+\varepsilon b \omega_{n}^{(0)}(k)}\left(1+\varepsilon b \omega_{n}^{(0)}(k)\right) \mathrm{d} k \\
& \\
& =\frac{\mathcal{E}^{\perp}}{(2 \pi)^{2}} \sum_{n=1}^{m} \int_{\mathbb{B}} \omega_{n}^{(0)}(k) \mathrm{d} k
\end{aligned}
$$

6. Application: Fermions in periodic media

Quantum Hall current at zero temperature:
Let $d=2$, include a constant magnetic field B_{0} with rational flux in the periodic Hamiltonian and set $A(x)=\frac{1}{2} b \wedge x$ and $\phi(x):=\mathcal{E} \cdot x$. Take $f(x):=\mathbf{1}_{(-\infty, \mu)}(x)$ to be the Fermi-Dirac distribution with Fermi energy μ and consider the current operator $\widehat{J}:=\frac{i}{\varepsilon}[\widehat{H}, x]$. Then

$$
\begin{aligned}
& j(b, \mathcal{E}):=\operatorname{Tr}(f(\widehat{H}) \widehat{J})=\sum_{n=1}^{m} \operatorname{Tr}\left(\widehat{P}_{n} f(\widehat{H}) \widehat{J}\right) \\
& \quad=\frac{1}{(2 \pi)^{2}} \sum_{n=1}^{m} \int_{\mathbb{B}} j_{n}(k) \mathrm{d} \lambda_{n}^{(1)}+\mathcal{O}(\varepsilon) \\
& \\
& =\frac{1}{(2 \pi)^{2} \varepsilon} \sum_{n=1}^{m} \int_{\mathbb{B}} \frac{\nabla_{k}\left(e_{n}(k)+\varepsilon b m_{n}(k)\right)+\varepsilon \mathcal{E}^{\perp} \omega_{n}^{(0)}(k)}{1+\varepsilon b \omega_{n}^{(0)}(k)}\left(1+\varepsilon b \omega_{n}^{(0)}(k)\right) \mathrm{d} k \\
& \\
& =\frac{\mathcal{E}^{\perp}}{(2 \pi)^{2}} \sum_{n=1}^{m} \int_{\mathbb{B}} \omega_{n}^{(0)}(k) \mathrm{d} k \in \frac{\mathcal{E}^{\perp}}{2 \pi} \mathbb{Z}
\end{aligned}
$$

6. Application: Fermions in periodic media

Quantum Hall current at zero temperature:
Let $d=2$, include a constant magnetic field B_{0} with rational flux in the periodic Hamiltonian and set $A(x)=\frac{1}{2} b \wedge x$ and $\phi(x):=\mathcal{E} \cdot x$. Take $f(x):=\mathbf{1}_{(-\infty, \mu)}(x)$ to be the Fermi-Dirac distribution with Fermi energy μ and consider the current operator $\widehat{\jmath}:=\frac{i}{\varepsilon}[\widehat{H}, x]$. Then

$$
\begin{aligned}
& j(b, \mathcal{E}):=\operatorname{Tr}(f(\widehat{H}) \widehat{J})=\sum_{n=1}^{m} \operatorname{Tr}\left(\widehat{P}_{n} f(\widehat{H}) \widehat{\jmath}\right) \\
& \quad=\frac{1}{(2 \pi)^{2}} \sum_{n=1}^{m} \int_{\mathbb{B}} j_{n}(k) \mathrm{d} \lambda_{n}^{(1)}+\mathcal{O}(\varepsilon) \\
& =\frac{1}{(2 \pi)^{2} \varepsilon} \sum_{n=1}^{m} \int_{\mathbb{B}} \frac{\nabla_{k}\left(e_{n}(k)+\varepsilon b m_{n}(k)\right)+\varepsilon \mathcal{E}^{\perp} \omega_{n}^{(0)}(k)}{1+\varepsilon b \omega_{n}^{(0)}(k)}\left(1+\varepsilon b \omega_{n}^{(0)}(k)\right) \mathrm{d} k \\
& \\
& =\frac{\mathcal{E}^{\perp}}{(2 \pi)^{2}} \sum_{n=1}^{m} \int_{\mathbb{B}} \omega_{n}^{(0)}(k) \mathrm{d} k \in \frac{\mathcal{E}^{\perp}}{2 \pi} \mathbb{Z}
\end{aligned}
$$

Note that our theorems also hold for the phase space $T^{*} \mathbb{B}$ with nontrivial topology where eigen-bundles can be non-trivializable.

6. Application: Fermions in periodic media

The free energy of a such a Fermi gas at positive temperature is

$$
p(b, \beta, \mu):=\beta^{-1} \operatorname{Tr} \ln \left(1+\mathrm{e}^{-\beta\left(\hat{H}^{b}-\mu\right)}\right) .
$$

6. Application: Fermions in periodic media

The free energy of a such a Fermi gas at positive temperature is

$$
p(b, \beta, \mu):=\beta^{-1} \operatorname{Tr} \ln \left(1+\mathrm{e}^{-\beta\left(\widehat{H}^{b}-\mu\right)}\right)
$$

We can write also this as a sum of contributions from all Bloch bands:

$$
p(b, \beta, \mu)=\frac{1}{\beta} \sum_{n} \int_{\mathbb{B}}\left[\ln \left(1+\mathrm{e}^{-\beta\left(h_{n}^{(2)}(k)-\mu\right)}\right)+Q_{n}(k)\right] \lambda_{n}^{(2)}(\mathrm{d} k)+\mathcal{O}\left(b^{3}\right)
$$

6. Application: Fermions in periodic media

The free energy of a such a Fermi gas at positive temperature is

$$
p(b, \beta, \mu):=\beta^{-1} \operatorname{Tr} \ln \left(1+\mathrm{e}^{-\beta\left(\widehat{H}^{b}-\mu\right)}\right)
$$

We can write also this as a sum of contributions from all Bloch bands:

$$
p(b, \beta, \mu)=\frac{1}{\beta} \sum_{n} \int_{\mathbb{B}}\left[\ln \left(1+\mathrm{e}^{-\beta\left(h_{n}^{(2)}(k)-\mu\right)}\right)+Q_{n}(k)\right] \lambda_{n}^{(2)}(\mathrm{d} k)+\mathcal{O}\left(b^{3}\right)
$$

and for the zero field susceptibility one finds that

$$
S(\beta, \mu):=\left.\partial_{b}^{2} p(b, \beta, \mu)\right|_{b=0}
$$

6. Application: Fermions in periodic media

The free energy of a such a Fermi gas at positive temperature is

$$
p(b, \beta, \mu):=\beta^{-1} \operatorname{Tr} \ln \left(1+\mathrm{e}^{-\beta\left(\widehat{H}^{b}-\mu\right)}\right)
$$

We can write also this as a sum of contributions from all Bloch bands:

$$
p(b, \beta, \mu)=\frac{1}{\beta} \sum_{n} \int_{\mathbb{B}}\left[\ln \left(1+\mathrm{e}^{-\beta\left(h_{n}^{(2)}(k)-\mu\right)}\right)+Q_{n}(k)\right] \lambda_{n}^{(2)}(\mathrm{d} k)+\mathcal{O}\left(b^{3}\right)
$$

and for the zero field susceptibility one finds that

$$
\begin{aligned}
S(\beta, \mu):= & \left.\partial_{b}^{2} p(b, \beta, \mu)\right|_{b=0} \\
= & \frac{2}{\beta} \sum_{n} \int_{\mathbb{B}}\left[f\left(e_{n}(k)\right) \lambda_{2, n}(k)\right. \\
& +f^{\prime}\left(e_{n}(k)\right)\left(m_{n}(k) \omega_{n}(k)+h_{2, n}(k)\right) \\
& +f^{\prime \prime}\left(e_{n}(k)\right)\left(\frac{1}{2} m_{n}(k)^{2}+\left\|\nabla e_{n}(k)^{\perp}\right\|_{g_{n}(k)}^{2}\right. \\
& \left.\left.\quad-\frac{1}{24} \varepsilon_{j k} \varepsilon_{k l}\left(\nabla^{2} e_{n}\right)_{j k}(k)\left(\nabla^{2} e_{n}\right)_{l i}(k)\right)\right] \mathrm{d} k
\end{aligned}
$$

where $f(x)=\ln (1+\exp (-\beta(x-\mu)))$.

7. Conclusion

Thanks for your attention!

[^0]: ${ }^{1}$ Helffer-Sjöstrand '89, Emmrich-Weinstein '96, Nenciu-Sordoni '03, Panati-Spohn-T. '03

[^1]: ${ }^{1}$ Helffer-Sjöstrand '89, Emmrich-Weinstein '96, Nenciu-Sordoni '03, Panati-Spohn-T. '03

