Topology in QCD and Axion Dark Matter.

Andreas Ringwald (DESY)

Symposium on Advances in Semi-Classical Methods in Mathematics and Physics Groningen, NL, 19-21 October 2016

Topological Theta Term and Strong CP Problem

Most general gauge invariant Lagrangian of QCD:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a,\mu\nu} + \overline{q} \left(i \gamma_{\mu} D^{\mu} - \mathcal{M}_{q} \right) q - \frac{\alpha_{s}}{8\pi} \theta G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

- Parameters: strong coupling α_s , quark masses $\mathcal{M}_q = \mathrm{diag}(m_u, m_d, \ldots)$ and theta angle θ [Belavin et al. `75;´t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]
- > Topological theta term $\propto G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} \propto {\bf E}^a \cdot {\bf B}^a$ violates P and T, and thus CP
- Most sensitive probe of P and T violation in flavor conserving interactions: electric dipole moment of neutron; experimentally

$$|d_n| < 2.9 \times 10^{-26} \ e \, \text{cm}$$

Strong CP problem:

$$d_n(\theta) \sim e \, \theta \frac{m_u m_d}{(m_u + m_d) m_n^2} \sim 6 \times 10^{-17} \, \theta \, e \, \text{cm} \Rightarrow |\theta| < 10^{-9}$$

Topological Theta Term and Strong CP Problem

Theta dependence of vacuum energy density in QCD,

$$\epsilon_0(\theta) \equiv -\frac{1}{\mathcal{V}} \ln \left[\frac{Z(\theta)}{Z(0)} \right], \qquad -\pi \le \theta \le \pi$$

Partition function in terms of Fourier series of Euclidean path integrals over gauge fields with fixed topological charge

$$Z(\theta) = \sum_{Q = -\infty}^{+\infty} \exp[i\theta Q] Z_Q, \qquad Q = \int d^4x \, \frac{\alpha_s}{8\pi} G^b_{\mu\nu} \tilde{G}^{b,\mu\nu} \equiv \int d^4x \, q(x)$$

$$Z_Q = \int_Q [dG][dq][d\bar{q}] \exp\left[-\int d^4x \left\{\frac{1}{4}G^a_{\mu\nu}G^a_{\mu\nu} + i\bar{q}\gamma_\mu D_\mu q - \bar{q}_R \mathcal{M} q_L - \bar{q}_L \mathcal{M}^\dagger q_R\right\}\right]$$

- > QCD at large \mathcal{V} and small m_q well described by effective field theory of Nambu-Goldstone bosons originating from spontaneous breaking of chiral symmetry of light quarks (ChPT)
- > Theta dependence of vacuum energy can be inferred from ChPT by rotating theta into quark mass matrix by axial U(1) rotation

Topological Theta Term and Strong CP Problem

> In leading order SU(2) chiral perturbation theory: [Di Vecchia, Veneziano `80]

$$\epsilon_0^{(2)}(\theta) = -m_\pi^2 f_\pi^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2}} \sin^2\left(\frac{\theta}{2}\right)$$

[Grilli di Cortona et al. `16]

- Minimum at vanishing theta parameter
- > If theta were a dynamical field, its VEV would be zero

Axionic Solution of Strong CP Problem

- > Peccei-Quinn (PQ) solution of strong CP problem: [Peccei,Quinn `77]
- Introduce field A(x) as dynamical theta parameter, respecting a non-linearly realized $U(1)_{PQ}$ symmetry, i.e. a shift symmetry, $A(x) \to A(x) + \text{const.}$ broken only by anomalous couplings to gauge fields,

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} A \partial^{\mu} A - \frac{\alpha_s}{8\pi} \frac{A}{f_A} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} - \frac{\alpha}{8\pi} \frac{E}{N} \frac{A}{f_A} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \sum_f C_{Af} \frac{\partial_{\mu} A}{f_A} \overline{\psi}_f \gamma^{\mu} \gamma_5 \psi_f$$

- Can eliminate theta by shift $A(x) \to A(x) \theta f_A$; QCD dynamics (see above) leads then to vanishing VEV, < A> = 0, i.e. P, T, and CP conserved
- Particle excitation of A: Nambu-Goldstone boson "axion" [Weinberg `78; Wilczek `78]
- Potential and in particular mass can be inferred from $\epsilon_0(\theta)$:

$$V(A) \equiv \epsilon_0 \left(\theta = \frac{A}{f_A} \right) \quad \Rightarrow \quad m_A^2 \equiv \frac{d^2 V}{dA^2} \bigg|_{A=0} = \frac{m_\pi^2 f_\pi^2}{f_A^2} \frac{m_u m_d}{(m_u + m_d)^2}$$

- Strength of its interactions with SM controlled by axion decay constant = PQ scale f_A
- Must be large to avoid excessive energy losses of stars:

$$f_A \gtrsim 4 \times 10^8 \text{ GeV} \Rightarrow m_A \lesssim 14 \text{ meV}$$

In cosmological applications, need axion potential at finite temperature,

$$V(A,T) \equiv -\frac{1}{\mathcal{V}} \ln \left[\frac{Z(\theta,T)}{Z(0,T)} \right] \bigg|_{\theta=A/f_A}$$

Axion mass determined by topological susceptibility (variance of topological charge distribution)

$$m_A^2(T)f_A^2 = \frac{\langle Q^2 \rangle_T|_{\theta=0}}{\mathcal{V}} \equiv \chi(T)$$

> At very large temperatures, above the quark hadron phase transition, expect that partition function can be described by a dilute gas of instantons and anti-instantons (minima of Euclidean action with $Q=\pm 1$)

$$A_{\mu}^{(I)}(x;\rho,U,x_0) = -\frac{i}{g} \frac{\rho^2}{(x-x_0)^2} U \frac{\sigma_{\mu} (\overline{x} - \overline{x_0}) - (x_{\mu} - x_{0\mu})}{(x-x_0)^2 + \rho^2} U^{\dagger}$$

[Belavin, Polyakov, Schwartz, Tyupkin `75]

In cosmological applications, need axion potential at finite temperature

$$V(A,T) \equiv -\frac{1}{\mathcal{V}} \ln \left[\frac{Z(\theta,T)}{Z(0,T)} \right] \bigg|_{\theta=A/f_A}$$

Axion mass determined by topological susceptibility (variance of topological charge distribution)

$$m_A^2(T)f_A^2 = \frac{\langle Q^2 \rangle_T|_{\theta=0}}{\mathcal{V}} \equiv \chi(T)$$

> At very large temperatures, above the quark hadron phase transition, expect that partition function can be described by a dilute gas of instantons and anti-instantons (minima of Euclidean action with $Q=\pm 1$)

$$\mathcal{L}\left(A_{\mu}^{(I)}(x;\rho,U,0)\right)$$

$$= \frac{12}{\pi\alpha_s} \cdot \frac{\rho^4}{(x^2 + \rho^2)^4}$$

$$\Rightarrow S\left[A_{\mu}^{(I)}\right] = \frac{2\pi}{\alpha_s}$$

In cosmological applications, need axion potential at finite temperature

$$V(A,T) \equiv -\frac{1}{\mathcal{V}} \ln \left[\frac{Z(\theta,T)}{Z(0,T)} \right] \bigg|_{\theta=A/f_A}$$

Axion mass determined by topological susceptibility (variance of topological charge distribution)

$$m_A^2(T)f_A^2 = \frac{\langle Q^2 \rangle_T|_{\theta=0}}{\mathcal{V}} \equiv \chi(T)$$

> At very large temperatures, above the quark hadron phase transition, expect that partition function can be described by a dilute gas of instantons and anti-instantons (minima of Euclidean action with $Q=\pm 1$)

$$Z(\theta, T) \simeq \sum_{n_I, n_{\bar{I}}} \frac{1}{n_I! n_{\bar{I}}!} Z_I^{n_I}(T) Z_{\bar{I}}^{n_{\bar{I}}}(T) \exp\left[i\theta(n_I - n_{\bar{I}})\right]$$

$$m_A^2(T)f_A^2 = \chi(T) \simeq \frac{Z_I(T) + Z_{\bar{I}}(T)}{\mathcal{V}} = 2\int_0^\infty d\rho \, D(\rho) \, G(\pi \rho T)$$

> Zero temperature instanton size distribution:

['t Hooft `76]

$$D(\rho) = \frac{d}{\rho^5} \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^{2N_c} \exp\left(-\frac{2\pi}{\alpha_s(\mu_r)} \right) (\rho \mu_r)^{\beta_0} \prod_{i=1}^{n_f} (\rho m_i(\mu_r))$$

> At large temperature, color-electric Debye screening prohibits existence of large-scale coherent fields in plasma, leading to [Gross,Pisarski,Yaffe `76]

$$G(\pi \rho T) = \exp\left\{-\frac{6 + n_f}{3}(\pi \rho T)^2 - 18\left[1 - \frac{n_f}{9}\right]A(\pi \rho T)\right\}$$
$$A(\pi \rho T) = -\frac{1}{12}\ln\left[1 + (\pi \rho T)^2/3\right] + \alpha\left[1 + \gamma(\pi \rho T)^{-2/3}\right]^{-8}$$

- > Cuts off integration at $ho \sim 1/(\pi T)$ and ensures validity of dilute instanton gas approximation (DIGA) at large temperatures, at which $\alpha_s(\pi T) \ll 1$
- Axion mass predicted to decrease power-like with temperature in DIGA:

$$m_A^2(T)f_A^2 = \chi(T) \simeq 2 \int_0^\infty d\rho \, D(\rho) \, G(\pi \rho T) \propto T^{-(7 + \frac{1}{3}n_f)}$$

- How good is DIGA quantitatively? Check with lattice QCD!
- Topological susceptibility notoriously difficult to calculate on lattice
 - 1. Large cutoff effects when exploiting action with non-chiral quarks to calculate topological observables
 - 2. Tiny topological susceptibility needs extremely long simulation threads to observe enough changes of topological sectors
- Solutions of these problems:

[Borsanyi et al. `16]

- 1. Eigenvalue reweighting technique: Substitute topology related eigenvalues of nonchiral quark Dirac operator with its corresponding eigenvalues in continuum
- 2. Fixed sector integral technique: Measure logarithmic differential of topological susceptibility which is related to quantities to be measured in fixed topological sectors. Then integrate.

Results:

[Borsanyi et al. `16]

- Temperature slope remarkably close to DIGA prediction
- DIGA underestimates topological susceptibility by overall normalization "K factor" of order ten (should be improved in two-loop DIGA)

> Results:

DM from vacuum realignment:

[Preskill et al 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- In early universe, axion frozen at random initial value
- Later, field feels pull of mass towards zero and oscillates around it
- Spatially uniform oscillating classical field = coherent state of many, extremely non-relativistic particles = CDM

DM from vacuum realignment:

[Preskill et al 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- In early universe, axion frozen at random initial value
- Later, field feels pull of mass towards zero and oscillates around it
- Spatially uniform oscillating classical field = coherent state of many, extremely non-relativistic particles = CDM

Post-inflationary PQ restoration:

- Initial axion angle uncorrelated at causally disconnected points
- Average DM abundance depends only on one unknown parameter: f_A
- Strict lower bound: $m_A > 28(2) \, \mu \mathrm{eV}$
- Taking into account DM production also due to axion strings and walls:

$$50 \,\mu \mathrm{eV} \lesssim m_A \lesssim 15 \,\mathrm{meV}$$

Andreas Ringwald | Topology in QCD and Axion Dark Matter, Symposium on advances ..., Groningen, NL, 19 – 21 October 2016 | Page 15

- Post-inflationary PQ restoration:
 - Initial axion angle uncorrelated at causally disconnected points
 - Average DM abundance depends only on one unknown parameter: f_A
 - Strict lower bound: $m_A > 28(2) \, \mu \mathrm{eV}$
 - Taking into account DM production also due to axion strings and walls:

$$50 \,\mu \mathrm{eV} \lesssim m_A \lesssim 15 \,\mathrm{meV}$$

- Pre-inflationary scenario (no restoration after inflation):
 - Also dependence on universal initial axion angle
 - No contribution from topological defects
 - Strong constraints from CMB isocurvature fluctuations

Andreas Ringwald | Topology in QCD and Axion Dark Matter, Symposium on adva

- Upcoming generation of axion dark matter experiments can probe sizeable portion of axion mass range relevant for DM:
 - $m_A \ll \mu eV$: searches for oscillating nuclear electric dipole moments exploiting nuclear magnetic resonance techniques (CASPEr)
 - $\mu eV \lesssim m_A \lesssim 0.1 \, \mathrm{meV}$: searches for excitations of electromagnetic resonances due to axion photon conversion in microwave cavities in superconducting solenoids (ADMX, X3, CULTASK,)
 - $30\,\mu {\rm eV} \lesssim m_A \lesssim 0.3\,{\rm meV}$: searches for electromagnetic excitation in open dielectric/Fabry-Perot resonator in a strong magnetic field (MADMAX/ORPHEUS, ...)

• $0.3 \, \mathrm{meV} \lesssim m_A \lesssim 10 \, \mathrm{meV}$: searches exploiting dish antenna or electron spin precession in galactic axion wind (QUAX)

Summary

- Axions are one of the most attractive dark matter candidates
- A key quantity entering the prediction of the axion dark matter abundance is the topological susceptibility in QCD at temperatures above the quark hadron phase transition.
- The latter can be calculated semi-classically in the dilute instanton gas approximation
- Comparison with new non-perturbative continuum extrapolated lattice QCD results: Nice agreement is found for the temperature slope, but overall normalization of one-loop DIGA off by one order of magnitude
- Strict lower bound of axion mass in post-inflationary PQ symmetry restoration scenario
 - Current running experiments do not cover post-inflationary PQ symmetry restoration
 - Push to new experiments!

