The Hunting of the Star-product

Ricardo Buring October 19, 2016

Supervisor: Arthemy Kiselev (September 2014 - now)

University of Groningen, The Netherlands

Symposium on advances in semi-classical methods in mathematics and physics

• * • = • • +
$$\hbar$$
 / + $\hbar^2 \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{6} \right) + \mathcal{O}(\hbar^3).$

Deformation quantization

Groenewold's star-product

See On the principles of elementary quantum mechanics, p. 48.

- Let \mathbb{R}^{2n} be phase space with coordinates (q, p).
- Observables live in $C^{\infty}(\mathbb{R}^{2n}) = \{f : \mathbb{R}^{2n} \to \mathbb{R} : f \text{ smooth}\}.$
- Classical Poisson bracket $\{, \}$ on $C^{\infty}(\mathbb{R}^{2n})$:

$$\{f,g\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_{i}}\frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}}\frac{\partial g}{\partial q_{i}}\right).$$

 $\cdot\,$ Groenewold displays a "quantum product" $\star\,$ such that

$$f \star g = fg + O(\hbar)$$
 and $f \star g - g \star f = i\hbar\{f,g\} + O(\hbar^2)$.

Groenewold's star-product

See On the principles of elementary quantum mechanics, p. 48.

- Let \mathbb{R}^{2n} be phase space with coordinates (q, p).
- Observables live in $C^{\infty}(\mathbb{R}^{2n}) = \{f : \mathbb{R}^{2n} \to \mathbb{R} : f \text{ smooth}\}.$
- Classical Poisson bracket $\{,\}$ on $C^{\infty}(\mathbb{R}^{2n})$:

$$\{f,g\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right).$$

 $\cdot\,$ Groenewold displays a "quantum product" $\star\,$ such that

$$f \star g = fg + O(\hbar)$$
 and $f \star g - g \star f = i\hbar\{f,g\} + O(\hbar^2)$.

For convenience, put $\Pi = \begin{pmatrix} 0 & l_n \\ -l_n & 0 \end{pmatrix}$ and $\partial_i = \partial/\partial x_i$ for x = (q, p). Formula: $f \star g = fg + \frac{i\hbar}{2}\Pi^{ij}\partial_i(f)\partial_j(g) - \frac{\hbar^2}{4}\Pi^{ij}\Pi^{kl}\partial_i\partial_k(f)\partial_j\partial_l(g) + \dots$

Groenewold's star-product

See On the principles of elementary quantum mechanics, p. 48.

- Let \mathbb{R}^{2n} be phase space with coordinates (q, p).
- Observables live in $C^{\infty}(\mathbb{R}^{2n}) = \{f : \mathbb{R}^{2n} \to \mathbb{R} : f \text{ smooth}\}.$
- Classical Poisson bracket $\{, \}$ on $C^{\infty}(\mathbb{R}^{2n})$:

$$\{f,g\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right).$$

 $\cdot\,$ Groenewold displays a "quantum product" $\star\,$ such that

$$f \star g = fg + O(\hbar)$$
 and $f \star g - g \star f = i\hbar\{f,g\} + O(\hbar^2)$.

For convenience, put $\Pi = \begin{pmatrix} 0 & l_n \\ -l_n & 0 \end{pmatrix}$ and $\partial_i = \partial/\partial x_i$ for x = (q, p). Formula: $f \star g = fg + \frac{i\hbar}{2}\Pi^{ij}\partial_i(f)\partial_j(g) - \frac{\hbar^2}{4}\Pi^{ij}\Pi^{kl}\partial_i\partial_k(f)\partial_j\partial_l(g) + \dots$

Preview: •
$$\star \bullet = \bullet + \frac{i\hbar}{2}$$
 $- \frac{\hbar^2}{4}$ $- \frac{i\hbar^3}{8}$ $+ \mathcal{O}(\hbar^4)$

Review: Poisson brackets

Definition

A Poisson bracket $\{\cdot, \cdot\}$: $C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ on a smooth manifold M is a skew-symmetric bi-derivation satisfying the Jacobi identity:

$$\{f,g\} = -\{g,f\},$$

$$\{f,g+h\} = \{f,g\} + \{f,h\},$$

$$\{f,gh\} = \{f,g\}h + g\{f,h\},$$

$$\{f,\{g,h\}\} + \{g,\{h,f\}\} + \{h,\{f,g\}\} = 0$$

for all $f,g,h \in C^{\infty}(M)$

In coordinates: $\{f, g\} = \Pi^{ij} \partial_i(f) \partial_j(g) = (f) \xleftarrow{i} \Pi^{ij} \xrightarrow{j} (g)$ for skew-symmetric matrix of functions Π^{ij} .

Given

- $M \leftarrow$ smooth Poisson manifold with bracket { , }.
- $C^{\infty}(M) \leftarrow$ smooth scalar functions on M, form a Poisson algebra under $\{, \}$ and a commutative associative unital \mathbb{R} -algebra under (fg)(x) = f(x)g(x).

Can we *deform* the product into $\star : A \times A \rightarrow A$ given by

$$f \star g = fg + \hbar B_1(f,g) + \hbar^2 B_2(f,g) + \dots$$
 for $f,g \in C^{\infty}(M)$,

while staying unital, associative, and such that

$$f \star g - g \star f = \hbar\{f, g\} + O(\hbar^2)?$$

Here the B_i are bi-{linear, differential} operators; $A = C^{\infty}(M) \llbracket \hbar \rrbracket$.

Given

- $M \leftarrow$ smooth Poisson manifold with bracket { , }.
- $C^{\infty}(M) \leftarrow$ smooth scalar functions on M, form a Poisson algebra under $\{, \}$ and a commutative associative unital \mathbb{R} -algebra under (fg)(x) = f(x)g(x).

Can we *deform* the product into $\star : A \times A \rightarrow A$ given by

$$f \star g = fg + \hbar B_1(f,g) + \hbar^2 B_2(f,g) + \dots$$
 for $f,g \in C^{\infty}(M)$,

while staying unital, associative, and such that

$$f \star g - g \star f = \hbar\{f, g\} + O(\hbar^2)?$$

Here the B_i are bi-{linear, differential} operators; $A = C^{\infty}(M)[[\hbar]]$. More wishful version: can we have $f \star g = fg + \hbar \{f, g\} + O(\hbar^2)$?

Deformation quantization of Poisson manifolds, I

M. Kontsevich (1997): Yes we can!

Explicitly, on an affine manifold, let $\{f, g\} = \sum_{i,j} \Pi^{ij} \partial_i f \partial_j g$,

Then a star product is given (up to order 2) by

 $f \star g = fg + \hbar \Pi^{ij} \partial_i f \partial_j g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_i \partial_k f \partial_l g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_i \partial_k f \partial_l g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_k f \partial_i \partial_l g + \mathcal{O}(\hbar^3).$

Deformation quantization of Poisson manifolds, I

M. Kontsevich (1997): Yes we can!

Explicitly, on an affine manifold, let $\{f,g\} = \sum_{i,j} \Pi^{ij} \partial_i f \partial_j g$,

Then a star product is given (up to order 2) by

 $f \star g = fg + \hbar \Pi^{ij} \partial_i f \partial_j g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_i \partial_k f \partial_l g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_i \partial_k f \partial_l g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_k f \partial_i \partial_l g + \mathcal{O}(\hbar^3).$

Explicit *universal* formula in terms of (derivatives of) Poisson bi-vector components Π^{ij} , at all orders in \hbar .

Deformation quantization of Poisson manifolds, I

M. Kontsevich (1997): Yes we can!

Explicitly, on an affine manifold, let $\{f,g\} = \sum_{i,j} \Pi^{ij} \partial_i f \partial_j g$,

Then a star product is given (up to order 2) by

 $f \star g = fg + \hbar \Pi^{ij} \partial_i f \partial_j g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_i \partial_k f \partial_l g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_i \partial_k f \partial_l g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_k f \partial_i \partial_l g + \mathcal{O}(\hbar^3).$

Explicit *universal* formula in terms of (derivatives of) Poisson bi-vector components Π^{ij} , at all orders in \hbar .

Where does it come from? Sum of weighted graphs:

$$f \star g = fg + \sum_{n=1}^{\infty} \frac{\hbar^n}{n!} \left(\sum_{\Gamma \in G_n} w(\Gamma) B_{\Gamma}(f,g) \right)$$

Graphs and weights

Graphs

Kontsevich graphs in G_n ($n \ge 1$):

- n internal vertices; each has two ordered outgoing edges,
- two ordered ground vertices without outgoing edges,
- no tadpoles.

Table 1: Some Kontsevich graphs ($n \leq 2$).

NB: Ordering of edges in pictures is Left \prec Right.

Graphs

Kontsevich graphs in G_n ($n \ge 1$):

- n internal vertices; each has two ordered outgoing edges,
- two ordered ground vertices without outgoing edges,
- no tadpoles.

Table 1: Some Kontsevich graphs ($n \leq 2$).

NB: Ordering of edges in pictures is Left \prec Right.

Operators

Recipe for bi-differential operator B_{Γ} associated to graph Γ :

- label edges from internal vertex with indices, say *i*, *j*,
- substitute Poisson bi-vector component Π^{ij} into the vertex,
- substitute arguments *f*, *g* into ground vertices,
- incoming edge *i* acts as derivative ∂_i on target vertex,
- multiply (differentiated) contents of vertices,
- sum over all indices.

Table 2: Some bi-differential operators associated to graphs.

Star product

Kontsevich's star product is given up to $\mathcal{O}(\hbar^2)$ by

$$\begin{split} f \star g &= fg + \hbar \Pi^{ij} \partial_i f \partial_j g + \\ & \hbar^2 \big(\frac{1}{2} \Pi^{ij} \Pi^{kl} \partial_i \partial_k f \partial_j \partial_l g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_i \partial_k f \partial_l g + \frac{1}{3} \Pi^{ij} \partial_j \Pi^{kl} \partial_k f \partial_i \partial_l g \\ & + \frac{1}{6} \partial_k \Pi^{ij} \partial_j \Pi^{kl} \partial_i f \partial_l g \big) \\ & + \mathcal{O}(\hbar^3). \end{split}$$

• Now, about those weights $w(\Gamma)$.

Embedding the graphs in $\bar{\mathbb{H}}$

- Now, about those weights $w(\Gamma)$.
- Embed Γ in $\mathbb{H} \cup \mathbb{R} \subset \mathbb{C}$:
 - · the two ground vertices at $\{0,1\}\subset \mathbb{R},$
 - · internal vertices at pairwise distinct points,
 - edges as geodesics w.r.t. hyperbolic metric, i.e. vertical lines and circular segments.

Embedding the graphs in $\bar{\mathbb{H}}$

- Now, about those weights $w(\Gamma)$.
- Embed Γ in $\mathbb{H} \cup \mathbb{R} \subset \mathbb{C}$:
 - · the two ground vertices at $\{0,1\}\subset\mathbb{R}$,
 - · internal vertices at pairwise distinct points,
 - edges as geodesics w.r.t. hyperbolic metric, i.e. vertical lines and circular segments.
- Hyperbolic angle between vertices $p, q \in \mathbb{H}$:

$$\varphi(p,q) = \operatorname{Arg}\left(\frac{q-p}{q-\bar{p}}\right).$$

Weights

Definition

The weight of a Kontsevich graph $\Gamma \in G_n$ is given by the integral

$$w(\Gamma) = \frac{1}{(2\pi)^{2n}} \int_{C_n(\mathbb{H})} \bigwedge_{k=1}^n \mathrm{d}\varphi(p_k, p_{\mathrm{Left}(k)}) \wedge \mathrm{d}\varphi(p_k, p_{\mathrm{Right}(k)}),$$

over $C_n(\mathbb{H}) = \{(p_1, \ldots, p_n) \in \mathbb{H}^n : p_i \text{ pairwise distinct}\}.$

For example,

$$w\left(\bigwedge\right) = \int_{C_1(\mathbb{H})} \mathrm{d}\varphi(p,0) \wedge \mathrm{d}\varphi(p,1)$$
$$= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} dx \int_0^{\infty} dy \frac{4y}{((x-1)^2 + y^2)(x^2 + y^2)} = \frac{1}{2}.$$

Formal series of graphs

Our approach: formal series of graphs, modulo ...

 $\cdot\,$ For a fixed Poisson structure we have a correspondence

 $\Gamma \mapsto B_{\Gamma}.$

• Can extend it to formal sums of graphs:

$$\sum w_{\Gamma}\Gamma\mapsto \sum w_{\Gamma}B_{\Gamma}.$$

• What is in the kernel, for all Poisson structures?

Our approach: formal series of graphs, modulo ...

 $\cdot\,$ For a fixed Poisson structure we have a correspondence

 $\Gamma\mapsto B_{\Gamma}.$

• Can extend it to formal sums of graphs:

$$\sum w_{\Gamma}\Gamma\mapsto \sum w_{\Gamma}B_{\Gamma}.$$

- What is in the kernel, for all Poisson structures?
- Skew-symmetry, and (differential consequences of) Jacobi.

Our approach: formal series of graphs, modulo ...

• For a fixed Poisson structure we have a correspondence

 $\Gamma\mapsto B_{\Gamma}.$

• Can extend it to formal sums of graphs:

$$\sum w_{\Gamma}\Gamma\mapsto \sum w_{\Gamma}B_{\Gamma}.$$

- What is in the kernel, for all Poisson structures?
- Skew-symmetry, and (differential consequences of) Jacobi.
- Main idea: We consider formal sums modulo these things.

Illustration 1: Associativity up to order 2

Recall:
•
$$\star \bullet = \bullet \bullet + \hbar \wedge + \hbar^2 \left(\frac{1}{2} \wedge + \frac{1}{3} \wedge + \frac{1}{3} \wedge + \frac{1}{6} \wedge + \frac{1}{6} \right) + \mathcal{O}(\hbar^3).$$

• Expand associator $(f \star g) \star h - f \star (g \star h)$ in terms of graphs:

$$\sum_{n=0}^{\infty} \hbar^n \sum_{r+s=n} B_r(B_s(f,g),h) - B_r(f,B_s(g,h)).$$

Graphs act on graphs by the (iterated) Leibniz rule.

- Collect terms by using the skew-symmetry.
- What remains at \hbar^2 : $\frac{2}{3}$ multiplied by

$$\int_{f} \frac{1}{g} \frac{1}{h} - \int_{f} \frac{1}{g} \frac{1}{h} - \int_{f} \frac{1}{g} \frac{1}{h} = \operatorname{Jac}_{\Pi}(f, g, h) = 0.$$

Illustration 2: Associativity up to order 3

Expand $(f \star g) \star h - f \star (g \star h)$ graphically \rightsquigarrow 39 terms at \hbar^3 . Vanishing is (differential) consequence of Jacobi, but how?

Jacobi identity and its differential consequences

We consider the Jacobiator as a tri-differential operator, we look at the differential consequences of its vanishing, and restrict to fixed total differential orders.

Jacobi identity and its differential consequences, continued

Jacobi identity and its differential consequences, continued

Moral: looking at formal sums of graphs is useful, since we can identify/construct differential consequences of the Jacobi identity graphically.

Illustration 3: undetermined weights & finding relations

For $n \ge 3$ direct integration becomes hard. Start with undetermined weights, then find relations:

- skew-symmetry of graphs and weights,
- weight of mirror reflection of $\Gamma \in G_n$ is $(-1)^n w(\Gamma)$,
- for some graphs the weight integrand vanishes,
- multiplicativity of the weight; factorization into primes:

- cyclic weight relations ({Willwacher, Shoikhet}–Felder),
- formula is universal, so holds for all Poisson bi-vectors: substitute Π into * with undetermined weights & solve associativity equation.

Definition (Primitive set of graphs)

A set of graphs is called *primitive* (or *basic*) if it contains only

- prime graphs
- of positive differential order,

and only one representative per equivalence class modulo {skew-symmetry, mirror reflections} is contained in the set.

Weights of all graphs are expressed via weights of basic graphs. **Strategy**:

- generate basic set of graphs,
- find relations between their weights.

The star product formula is *universal*, so it is associative for every Poisson structure.

- $\cdot\,$ Evaluate associator at particular point for particular $\Pi.$
- For Π depending on a set of arbitrary functions $\{F_i\}$, consider the associator as a differential operator on f, g, hand the F_i .

This yields relations between the weights.

Remark: associator's $(1,2,3) \leftarrow (3,3), (1,5)$ have no primes at $\hbar^4 \implies$ relations between weights at order 3.

Result

At order 3 we have 15 basic graphs.

- Integrands vanishing: 1.
- Cyclic weight relations up to order 3.
- Substitute generic 3d Poisson, in associator up to order 4.

 \rightsquigarrow know all weights exactly, without calculating any integrals!

Result

At order 3 we have 15 basic graphs.

- Integrands vanishing: 1.
- Cyclic weight relations up to order 3.
- Substitute generic 3d Poisson, in associator up to order 4.
- → know all weights exactly, without calculating any integrals!

At order 4 we have 149 basic graphs.

- Integrands vanishing: 21.
- Cyclic weight relations up to order 6.
- Relations from associativity up to order 5 (in progress).

We *solve* the linear system of relations. This yields:

- 67 are now known exactly,
- 82 expressed via \leq 10.

Universal w.r.t. all Poisson structures:

- We understand factorization of associativity! (Lemma)
- The \star -product mod $\mathcal{O}(\hbar^4)$ known exactly.
- New linear relations between weights w(Γ ∈ G₄) from ★ mod O(ħ⁶) → in progress.
- 149 weights: 67 exactly, 82 via only \leq 10 (in progress).
- Strategy to find weights fully implemented in software.
- Factorization algorithm applied to solve another problem (on tetrahedral flows).

References I

- A. Bouisaghouane, R. Buring, and A. V. Kiselev.
 The Kontsevich tetrahedral flows revisited.
 SIGMA (submitted), 2016.
 arXiv:1608.01710 [math.QA].
- R. Buring and A. V. Kiselev.
 The table of weights for graphs with ≤ 3 internal vertices in Kontsevich's deformation quantization formula.
 In SDSP III proceedings (to appear), 2015.
- 🔋 R. Buring and A. V. Kiselev.

On the Kontsevich *-product associativity mechanism. In *SQS'15 proceedings*, 2016. arXiv:1602.09036 [math.QA].

References II

R. Buring and A. V. Kiselev.

Software modules and computer-assisted proof schemes in the Kontsevich deformation quantization. In writing, 2016.

See http://github.com/rburing/kontsevich-graph-series-cpp for code.

M. Kontsevich.

Formality conjecture.

In *Deformation Theory and Symplectic Geometry*, pages 139–156. Kluwer, Dordrecht, 1997.

📔 M. Kontsevich.

Deformation quantization of Poisson manifolds, I. Lett. Math. Phys., 66:157 – 216, 2003.