The Hunting of the Star-product

Ricardo Buring

October 19, 2016
Supervisor: Arthemy Kiselev (September 2014 - now)

University of Groningen, The Netherlands

Symposium on advances in semi-classical methods in mathematics and physics

Deformation quantization

Groenewold's star-product

See On the principles of elementary quantum mechanics, p. 48.

- Let $\mathbb{R}^{2 n}$ be phase space with coordinates (q, p).
- Observables live in $C^{\infty}\left(\mathbb{R}^{2 n}\right)=\left\{f: \mathbb{R}^{2 n} \rightarrow \mathbb{R}: f\right.$ smooth $\}$.
- Classical Poisson bracket $\{$,$\} on C^{\infty}\left(\mathbb{R}^{2 n}\right)$:

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

- Groenewold displays a "quantum product" \star such that

$$
f \star g=f g+O(\hbar) \quad \text { and } \quad f \star g-g \star f=i \hbar\{f, g\}+O\left(\hbar^{2}\right) .
$$

Groenewold's star-product

See On the principles of elementary quantum mechanics, p. 48.

- Let $\mathbb{R}^{2 n}$ be phase space with coordinates (q, p).
- Observables live in $C^{\infty}\left(\mathbb{R}^{2 n}\right)=\left\{f: \mathbb{R}^{2 n} \rightarrow \mathbb{R}: f\right.$ smooth $\}$.
- Classical Poisson bracket $\left\{\right.$, \} on $C^{\infty}\left(\mathbb{R}^{2 n}\right)$:

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right) .
$$

- Groenewold displays a "quantum product" * such that

$$
f \star g=f g+O(\hbar) \quad \text { and } \quad f \star g-g \star f=i \hbar\{f, g\}+O\left(\hbar^{2}\right) .
$$

For convenience, put $\Pi=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$ and $\partial_{i}=\partial / \partial x_{i}$ for $x=(q, p)$.
Formula: $f \star g=f g+\frac{i \hbar}{2} \Pi^{i j} \partial_{i}(f) \partial_{j}(g)-\frac{\hbar^{2}}{4} \Pi^{i j} \Pi^{k l} \partial_{i} \partial_{k}(f) \partial_{j} \partial_{l}(g)+\ldots$

Groenewold's star-product

See On the principles of elementary quantum mechanics, p. 48.

- Let $\mathbb{R}^{2 n}$ be phase space with coordinates (q, p).
- Observables live in $C^{\infty}\left(\mathbb{R}^{2 n}\right)=\left\{f: \mathbb{R}^{2 n} \rightarrow \mathbb{R}: f\right.$ smooth $\}$.
- Classical Poisson bracket $\{$,$\} on C^{\infty}\left(\mathbb{R}^{2 n}\right)$:

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

- Groenewold displays a "quantum product" \star such that

$$
f \star g=f g+O(\hbar) \quad \text { and } \quad f \star g-g \star f=i \hbar\{f, g\}+O\left(\hbar^{2}\right) .
$$

For convenience, put $\Pi=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$ and $\partial_{i}=\partial / \partial x_{i}$ for $x=(q, p)$.
Formula: $f \star g=f g+\frac{i \hbar}{2} \Pi^{i j} \partial_{i}(f) \partial_{j}(g)-\frac{\hbar^{2}}{4} \Pi^{i j} \Pi^{k l} \partial_{i} \partial_{k}(f) \partial_{j} \partial_{l}(g)+\ldots$
Preview: $\bullet \star \bullet \bullet \bullet+\frac{i \hbar}{2} \bigwedge-\frac{\hbar^{2}}{4}-\frac{i \hbar^{3}}{8}+\mathcal{O}\left(\hbar^{4}\right)$

Review: Poisson brackets

Definition

A Poisson bracket $\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ on a smooth manifold M is a skew-symmetric bi-derivation satisfying the Jacobi identity:

$$
\begin{array}{r}
\{f, g\}=-\{g, f\}, \\
\{f, g+h\}=\{f, g\}+\{f, h\}, \\
\{f, g h\}=\{f, g\} h+g\{f, h\}, \\
\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0 \\
\text { for all } f, g, h \in C^{\infty}(M)
\end{array}
$$

In coordinates: $\{f, g\}=\Pi^{i j} \partial_{i}(f) \partial_{j}(g)=(f) \stackrel{i}{\leftarrow} \Pi^{i j} \xrightarrow{j}(g)$ for skew-symmetric matrix of functions $\Pi^{i j}$.

Deformation quantization of Poisson manifolds

Given

- $M \leftarrow$ smooth Poisson manifold with bracket \{, \}.
- $C^{\infty}(M) \leftarrow$ smooth scalar functions on M, form a Poisson algebra under $\{$,$\} and a commutative associative unital$ \mathbb{R}-algebra under $(f g)(x)=f(x) g(x)$.

Can we deform the product into $\star: A \times A \rightarrow A$ given by

$$
f \star g=f g+\hbar B_{1}(f, g)+\hbar^{2} B_{2}(f, g)+\ldots \quad \text { for } f, g \in C^{\infty}(M),
$$

while staying unital, associative, and such that

$$
f \star g-g \star f=\hbar\{f, g\}+O\left(\hbar^{2}\right) ?
$$

Here the B_{i} are bi-\{linear, differential\} operators; $A=C^{\infty}(M) \llbracket \hbar \rrbracket$.

Deformation quantization of Poisson manifolds

Given

- $M \leftarrow$ smooth Poisson manifold with bracket \{, \}.
- $C^{\infty}(M) \leftarrow$ smooth scalar functions on M, form a Poisson algebra under $\{$,$\} and a commutative associative unital$ \mathbb{R}-algebra under $(f g)(x)=f(x) g(x)$.

Can we deform the product into $\star: A \times A \rightarrow A$ given by

$$
f \star g=f g+\hbar B_{1}(f, g)+\hbar^{2} B_{2}(f, g)+\ldots \quad \text { for } f, g \in C^{\infty}(M),
$$

while staying unital, associative, and such that

$$
f \star g-g \star f=\hbar\{f, g\}+O\left(\hbar^{2}\right) ?
$$

Here the B_{i} are bi-\{linear, differential\} operators; $A=C^{\infty}(M) \llbracket \hbar \rrbracket$. More wishful version: can we have $f \star g=f g+\hbar\{f, g\}+\mathcal{O}\left(\hbar^{2}\right)$?

Deformation quantization of Poisson manifolds, I

M. Kontsevich (1997): Yes we can!

Explicitly, on an affine manifold, let $\{f, g\}=\sum_{i, j} \Pi^{i j} \partial_{i} f \partial_{j} g$,
Then a star product is given (up to order 2) by

$$
\begin{array}{r}
f \star g=f g+\hbar \Pi^{i j} \partial_{i} f \partial_{j} g+ \\
\hbar^{2}\left(\frac{1}{2} \Pi^{i j} \Pi^{k l} \partial_{i} \partial_{k} f \partial_{j} \partial_{l} g+\frac{1}{3} \Pi^{i j} \partial_{j} \Pi^{k l} \partial_{i} \partial_{k} f \partial_{l} g+\frac{1}{3} \Pi^{i j} \partial_{j} \Pi^{k l} \partial_{k} f \partial_{i} \partial_{l} g\right) \\
+\mathcal{O}\left(\hbar^{3}\right) .
\end{array}
$$

Deformation quantization of Poisson manifolds, I

M. Kontsevich (1997): Yes we can!

Explicitly, on an affine manifold, let $\{f, g\}=\sum_{i, j} \Pi^{i j} \partial_{i} f \partial_{j} g$,
Then a star product is given (up to order 2) by

$$
\begin{array}{r}
f \star g=f g+\hbar \Pi^{i j} \partial_{i} f \partial_{j} g+ \\
\hbar^{2}\left(\frac{1}{2} \Pi^{i j} \Pi^{k l} \partial_{i} \partial_{k} f \partial_{j} \partial_{l} g+\frac{1}{3} \Pi^{i j} \partial_{j} \Pi^{k l} \partial_{i} \partial_{k} f \partial_{l} g+\frac{1}{3} \Pi^{i j} \partial_{j} \Pi^{k l} \partial_{k} f \partial_{i} \partial_{l} g\right) \\
+\mathcal{O}\left(\hbar^{3}\right) .
\end{array}
$$

Explicit universal formula in terms of (derivatives of) Poisson bi-vector components $\Pi^{i j}$, at all orders in \hbar.

Deformation quantization of Poisson manifolds, I

M. Kontsevich (1997): Yes we can!

Explicitly, on an affine manifold, let $\{f, g\}=\sum_{i, j} \Pi^{i j} \partial_{i} f \partial_{j} g$,
Then a star product is given (up to order 2) by

$$
\begin{array}{r}
f \star g=f g+\hbar \Pi^{i j} \partial_{i} f \partial_{j} g+ \\
\hbar^{2}\left(\frac{1}{2} \Pi^{i j} \Pi^{k l} \partial_{i} \partial_{k} f \partial_{j} \partial_{l} g+\frac{1}{3} \Pi^{i j} \partial_{j} \Pi^{k l} \partial_{i} \partial_{k} f \partial_{l} g+\frac{1}{3} \Pi^{i j} \partial_{j} \Pi^{k l} \partial_{k} f \partial_{j} \partial_{l} g\right) \\
+\mathcal{O}\left(\hbar^{3}\right) .
\end{array}
$$

Explicit universal formula in terms of (derivatives of) Poisson bi-vector components $\Pi^{i j}$, at all orders in \hbar.

Where does it come from? Sum of weighted graphs:

$$
f \star g=f g+\sum_{n=1}^{\infty} \frac{\hbar^{n}}{n!}\left(\sum_{\Gamma \in G_{n}} w(\Gamma) B_{\Gamma}(f, g)\right)
$$

Graphs and weights

Graphs

Kontsevich graphs in $G_{n}(n \geq 1)$:

- n internal vertices; each has two ordered outgoing edges,
- two ordered ground vertices without outgoing edges,
- no tadpoles.

Table 1: Some Kontsevich graphs $(n \leq 2)$.

NB: Ordering of edges in pictures is Left \prec Right.

Graphs

Kontsevich graphs in $G_{n}(n \geq 1)$:

- n internal vertices; each has two ordered outgoing edges,
- two ordered ground vertices without outgoing edges,
- no tadpoles.

Table 1: Some Kontsevich graphs $(n \leq 2)$.

NB: Ordering of edges in pictures is Left \prec Right.

Operators

Recipe for bi-differential operator B_{Γ} associated to graph Γ :

- label edges from internal vertex with indices, say i, j,
- substitute Poisson bi-vector component $\Pi^{i j}$ into the vertex,
- substitute arguments f, g into ground vertices,
- incoming edge i acts as derivative ∂_{i} on target vertex,
- multiply (differentiated) contents of vertices,
- sum over all indices.

Table 2: Some bi-differential operators associated to graphs.

Star product

Kontsevich's star product is given up to $\mathcal{O}\left(\hbar^{2}\right)$ by

$$
\begin{aligned}
& \bullet \star \bullet=\bullet \bullet \hbar \bumpeq+ \\
& \text { (} \triangle \text { Ha } \\
& +O\left(\hbar^{3}\right) \text {. } \\
& f \star g=f g+\hbar \Pi^{i j} \partial_{i} f \partial_{j} g+ \\
& \hbar^{2}\left(\frac{1}{2} \Pi^{i j} \Pi^{k l} \partial_{i} \partial_{k} f \partial_{j} \partial_{l} g+\frac{1}{3} \Pi^{i j} \partial_{j} \Pi^{k l} \partial_{i} \partial_{k} f \partial_{l} g+\frac{1}{3} \Pi^{i j} \partial_{j} \Pi^{k l} \partial_{k} f \partial_{i} \partial_{l} g\right. \\
& \left.+\frac{1}{6} \partial_{k} \Pi^{i j} \partial_{j} \Pi^{k l} \partial_{i} f \partial_{l} g\right) \\
& +\mathcal{O}\left(\hbar^{3}\right) \text {. }
\end{aligned}
$$

Embedding the graphs in $\overline{\mathbb{H}}$

- Now, about those weights w(Г).

Embedding the graphs in $\overline{\mathbb{H}}$

- Now, about those weights w(Г).
- Embed Γ in $\mathbb{H} \cup \mathbb{R} \subset \mathbb{C}$:
- the two ground vertices at $\{0,1\} \subset \mathbb{R}$,
- internal vertices at pairwise distinct points,
- edges as geodesics w.r.t. hyperbolic metric, i.e. vertical lines and circular segments.

Embedding the graphs in $\overline{\mathbb{H}}$

- Now, about those weights w(Г).
- Embed Γ in $\mathbb{H} \cup \mathbb{R} \subset \mathbb{C}$:
- the two ground vertices at $\{0,1\} \subset \mathbb{R}$,
- internal vertices at pairwise distinct points,
- edges as geodesics w.r.t. hyperbolic metric, i.e. vertical lines and circular segments.
- Hyperbolic angle between vertices $p, q \in \mathbb{H}$:

$$
\varphi(p, q)=\operatorname{Arg}\left(\frac{q-p}{q-\bar{p}}\right)
$$

Weights

Definition

The weight of a Kontsevich graph $\Gamma \in G_{n}$ is given by the integral

$$
w(\Gamma)=\frac{1}{(2 \pi)^{2 n}} \int_{C_{n}(\mathbb{H})} \bigwedge_{k=1}^{n} \mathrm{~d} \varphi\left(p_{k}, p_{\operatorname{Left}(k)}\right) \wedge \mathrm{d} \varphi\left(p_{k}, p_{\operatorname{Right}(k)}\right),
$$

over $C_{n}(\mathbb{H})=\left\{\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{H}^{n}: p_{i}\right.$ pairwise distinct $\}$.
For example,

$$
\begin{aligned}
w(\bigwedge) & =\int_{C_{1}(\mathbb{H})} d \varphi(p, 0) \wedge d \varphi(p, 1) \\
& =\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} d x \int_{0}^{\infty} d y \frac{4 y}{\left((x-1)^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}=\frac{1}{2} .
\end{aligned}
$$

Formal series of graphs

Our approach: formal series of graphs, modulo ...

- For a fixed Poisson structure we have a correspondence

$$
\Gamma \mapsto B_{\Gamma} .
$$

- Can extend it to formal sums of graphs:

$$
\sum w_{\Gamma} \Gamma \mapsto \sum w_{\Gamma} B_{\Gamma} .
$$

-What is in the kernel, for all Poisson structures?

Our approach: formal series of graphs, modulo ...

- For a fixed Poisson structure we have a correspondence

$$
\Gamma \mapsto B_{\Gamma} .
$$

- Can extend it to formal sums of graphs:

$$
\sum w_{\Gamma} \Gamma \mapsto \sum w_{\Gamma} B_{\Gamma} .
$$

-What is in the kernel, for all Poisson structures?

- Skew-symmetry, and (differential consequences of) Jacobi.

Our approach: formal series of graphs, modulo ...

- For a fixed Poisson structure we have a correspondence

$$
\Gamma \mapsto B_{\Gamma} .
$$

- Can extend it to formal sums of graphs:

$$
\sum w_{\Gamma} \Gamma \mapsto \sum w_{\Gamma} B_{\Gamma} .
$$

-What is in the kernel, for all Poisson structures?

- Skew-symmetry, and (differential consequences of) Jacobi.
- Main idea: We consider formal sums modulo these things.

Illustration 1: Associativity up to order 2

 $+\mathcal{O}\left(\hbar^{3}\right)$.

- Expand associator $(f \star g) \star h-f \star(g \star h)$ in terms of graphs:

$$
\sum_{n=0}^{\infty} \hbar^{n} \sum_{r+s=n} B_{r}\left(B_{s}(f, g), h\right)-B_{r}\left(f, B_{s}(g, h)\right)
$$

Graphs act on graphs by the (iterated) Leibniz rule.

- Collect terms by using the skew-symmetry.
- What remains at $\hbar^{2}: \frac{2}{3}$ multiplied by

Illustration 2: Associativity up to order 3

$$
\begin{aligned}
& A(A)+(A \\
& A \\
& A \\
& A
\end{aligned}
$$

Expand $(f \star g) \star h-f \star(g \star h)$ graphically $\rightsquigarrow 39$ terms at \hbar^{3}. Vanishing is (differential) consequence of Jacobi, but how?

Jacobi identity and its differential consequences

We consider the Jacobiator as a tri-differential operator, we look at the differential consequences of its vanishing, and restrict to fixed total differential orders.

$$
\frac{2}{3} \Pi^{i j} \operatorname{Jac}_{\Pi}\left(\partial_{i} f, \partial_{j} g, h\right)=\frac{2}{3}(f, g, h)=
$$

Jacobi identity and its differential consequences, continued

Jacobi identity and its differential consequences, continued

Moral: looking at formal sums of graphs is useful, since we can identify/construct differential consequences of the Jacobi identity graphically.

Illustration 3: undetermined weights \& finding relations

For $n \geq 3$ direct integration becomes hard.
Start with undetermined weights, then find relations:

- skew-symmetry of graphs and weights,
- weight of mirror reflection of $\Gamma \in G_{n}$ is $(-1)^{n} w(\Gamma)$,
- for some graphs the weight integrand vanishes,
- multiplicativity of the weight; factorization into primes:

- cyclic weight relations (\{Willwacher, Shoikhet\}-Felder),
- formula is universal, so holds for all Poisson bi-vectors: substitute Π into * with undetermined weights \& solve associativity equation.

Primitive set of graphs

Definition (Primitive set of graphs)
A set of graphs is called primitive (or basic) if it contains only

- prime graphs
- of positive differential order,
and only one representative per equivalence class modulo \{skew-symmetry, mirror reflections\} is contained in the set.

Weights of all graphs are expressed via weights of basic graphs.
Strategy:

- generate basic set of graphs,
- find relations between their weights.

Substitution

The star product formula is universal, so it is associative for every Poisson structure.

- Evaluate associator at particular point for particular Π.
- For Π depending on a set of arbitrary functions $\left\{F_{i}\right\}$, consider the associator as a differential operator on f, g, h and the F_{F}.

This yields relations between the weights.
Remark: associator's $(1,2,3) \leftarrow(3,3),(1,5)$ have no primes at $\hbar^{4} \Longrightarrow$ relations between weights at order 3 .

Result

At order 3 we have 15 basic graphs.

- Integrands vanishing: 1.
- Cyclic weight relations up to order 3.
- Substitute generic 3d Poisson, in associator up to order 4.
\rightsquigarrow know all weights exactly, without calculating any integrals!

Result

At order 3 we have 15 basic graphs.

- Integrands vanishing: 1.
- Cyclic weight relations up to order 3.
- Substitute generic 3d Poisson, in associator up to order 4.
\rightsquigarrow know all weights exactly, without calculating any integrals!
At order 4 we have 149 basic graphs.
- Integrands vanishing: 21.
- Cyclic weight relations up to order 6 .
- Relations from associativity up to order 5 (in progress).

We solve the linear system of relations. This yields:

- 67 are now known exactly,
- 82 expressed via ≤ 10.

Conclusion: summary of results

Universal w.r.t. all Poisson structures:

- We understand factorization of associativity! (Lemma)
- The \star-product mod $\mathcal{O}\left(\hbar^{4}\right)$ known exactly.
- New linear relations between weights $w\left(\Gamma \in G_{4}\right)$ from \star $\bmod \mathcal{O}\left(\hbar^{6}\right) \rightsquigarrow$ in progress.
- 149 weights: 67 exactly, 82 via only ≤ 10 (in progress).
- Strategy to find weights fully implemented in software.
- Factorization algorithm applied to solve another problem (on tetrahedral flows).

References I

A. Bouisaghouane, R. Buring, and A. V. Kiselev. The Kontsevich tetrahedral flows revisited.
SIGMA (submitted), 2016.
arXiv:1608.01710 [math.QA].
求 R. Buring and A. V. Kiselev.
The table of weights for graphs with $\leqslant 3$ internal vertices in Kontsevich's deformation quantization formula.
In SDSP III proceedings (to appear), 2015.
围 R. Buring and A. V. Kiselev.
On the Kontsevich *-product associativity mechanism. In SQS'15 proceedings, 2016.
arXiv:1602.09036 [math.QA].

References II

R. Buring and A. V. Kiselev.

Software modules and computer-assisted proof schemes in the Kontsevich deformation quantization.
In writing, 2016.
See http://github.com/rburing/kontsevich-graph-series-cpp for code.
睩 M. Kontsevich.
Formality conjecture.
In Deformation Theory and Symplectic Geometry, pages
139-156. Kluwer, Dordrecht, 1997.
國 M. Kontsevich.
Deformation quantization of Poisson manifolds, I.
Lett. Math. Phys., 66:157-216, 2003.

