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• ⋆ • = • •+ℏ + ℏ2
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Deformation quantization



Groenewold’s star-product

See On the principles of elementary quantum mechanics, p. 48.
• Let R2n be phase space with coordinates (q,p).
• Observables live in C∞(R2n) = {f : R2n → R : f smooth}.
• Classical Poisson bracket { , } on C∞(R2n):

{f,g} =
n∑
i=1

(
∂f
∂qi

∂g
∂pi
− ∂f

∂pi
∂g
∂qi

)
.

• Groenewold displays a “quantum product” ⋆ such that

f ⋆ g = fg+ O(ℏ) and f ⋆ g− g ⋆ f = iℏ{f,g}+ O(ℏ2).

For convenience, put Π =
( 0 In
−In 0

)
and ∂i = ∂/∂xi for x = (q,p).

Formula: f ⋆ g = fg+ iℏ
2 Π

ij∂i(f)∂j(g)− ℏ2
4 Π

ijΠkl∂i∂k(f)∂j∂l(g) + . . .

Preview: • ⋆ • = • •+ iℏ
2 − ℏ2

4 − iℏ3
8 +O(ℏ4)
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Review: Poisson brackets

Definition
A Poisson bracket {·, ·} : C∞(M)× C∞(M)→ C∞(M) on a
smooth manifold M is a skew-symmetric bi-derivation
satisfying the Jacobi identity:

{f,g} = −{g, f},
{f,g+ h} = {f,g}+ {f,h},
{f,gh} = {f,g}h+ g{f,h},

{f, {g,h}}+ {g, {h, f}}+ {h, {f,g}} = 0
for all f,g,h ∈ C∞(M)

In coordinates: {f,g} = Πij∂i(f)∂j(g) = (f) i←− Πij
j−→ (g)

for skew-symmetric matrix of functions Πij.
2



Deformation quantization of Poisson manifolds

Given

• M← smooth Poisson manifold with bracket { , }.
• C∞(M)← smooth scalar functions on M, form a Poisson
algebra under { , } and a commutative associative unital
R-algebra under (fg)(x) = f(x)g(x).

Can we deform the product into ⋆ : A× A→ A given by

f ⋆ g = fg+ ℏB1(f,g) + ℏ2B2(f,g) + . . . for f,g ∈ C∞(M),

while staying unital, associative, and such that

f ⋆ g− g ⋆ f = ℏ{f,g}+ O(ℏ2)?

Here the Bi are bi-{linear, differential} operators; A = C∞(M)[[ℏ]].

More wishful version: can we have f ⋆ g = fg+ ℏ{f,g}+O(ℏ2)?
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Deformation quantization of Poisson manifolds, I

M. Kontsevich (1997): Yes we can!

Explicitly, on an affine manifold, let {f,g} =
∑

i,jΠ
ij∂if ∂jg,

Then a star product is given (up to order 2) by

f ⋆ g = fg+ ℏΠij∂if ∂jg+
ℏ2
( 1
2Π

ijΠkl∂i∂kf ∂j∂lg+ 1
3Π

ij∂jΠ
kl∂i∂kf ∂lg+ 1

3Π
ij∂jΠ

kl∂kf ∂i∂lg
)

+O(ℏ3).

Explicit universal formula in terms of (derivatives of) Poisson
bi-vector components Πij, at all orders in ℏ.

Where does it come from? Sum of weighted graphs:

f ⋆ g = fg+
∞∑
n=1

ℏn

n!

(∑
Γ∈Gn

w(Γ)BΓ(f,g)
)
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Graphs and weights



Graphs

Kontsevich graphs in Gn (n ≥ 1):

• n internal vertices; each has two ordered outgoing edges,
• two ordered ground vertices without outgoing edges,
• no tadpoles.

Table 1: Some Kontsevich graphs (n ≤ 2).

NB: Ordering of edges in pictures is Left ≺ Right.
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Operators

Recipe for bi-differential operator BΓ associated to graph Γ:

• label edges from internal vertex with indices, say i, j,
• substitute Poisson bi-vector component Πij into the vertex,
• substitute arguments f,g into ground vertices,
• incoming edge i acts as derivative ∂i on target vertex,
• multiply (differentiated) contents of vertices,
• sum over all indices.

Πij ∂i ⊗ ∂j ΠijΠkl ∂i∂k ⊗ ∂j∂l Πij∂jΠ
kl ∂i∂k ⊗ ∂l ∂kΠ

ij∂jΠ
kl ∂i ⊗ ∂l

Table 2: Some bi-differential operators associated to graphs.
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Star product

Kontsevich’s star product is given up to O(ℏ2) by

• ⋆ • = ••+ ℏ +

ℏ2
(
1
2 + 1

3 + 1
3 + 1

6

)
+ O(ℏ3).

f ⋆ g = fg+ ℏΠij∂if ∂jg +

ℏ2
( 1
2Π

ijΠkl∂i∂kf ∂j∂lg+ 1
3Π

ij∂jΠ
kl∂i∂kf ∂lg+ 1

3Π
ij∂jΠ

kl∂kf ∂i∂lg
+ 1

6∂kΠ
ij∂jΠ

kl∂if ∂lg
)

+O(ℏ3).
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Embedding the graphs in H̄

• Now, about those weights w(Γ).

• Embed Γ in H ∪ R ⊂ C:
• the two ground vertices at {0, 1} ⊂ R,
• internal vertices at pairwise distinct points,
• edges as geodesics w.r.t. hyperbolic metric,
i.e. vertical lines and circular segments.

• Hyperbolic angle between vertices p,q ∈ H:

φ(p,q) = Arg
(
q− p
q− p̄

)
.
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Weights

Definition
The weight of a Kontsevich graph Γ ∈ Gn is given by the integral

w(Γ) = 1
(2π)2n

∫
Cn(H)

n∧
k=1

dφ(pk,pLeft(k)) ∧ dφ(pk,pRight(k)),

over Cn(H) = {(p1, . . . ,pn) ∈ Hn : pi pairwise distinct}.

For example,

w
( )

=

∫
C1(H)

dφ(p, 0) ∧ dφ(p, 1)

=
1

(2π)2
∫ ∞

−∞
dx
∫ ∞

0
dy 4y

((x− 1)2 + y2)(x2 + y2) = 1
2 .

9



Formal series of graphs



Our approach: formal series of graphs, modulo ...

• For a fixed Poisson structure we have a correspondence

Γ 7→ BΓ.

• Can extend it to formal sums of graphs:∑
wΓΓ 7→

∑
wΓBΓ.

• What is in the kernel, for all Poisson structures?

• Skew-symmetry, and (differential consequences of) Jacobi.
• Main idea: We consider formal sums modulo these things.
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Illustration 1: Associativity up to order 2

Recall:
• ⋆ • = ••+ ℏ + ℏ2

(
1
2 + 1

3 + 1
3 + 1

6

)
+O(ℏ3).

• Expand associator (f ⋆ g) ⋆ h− f ⋆ (g ⋆ h) in terms of graphs:
∞∑
n=0

ℏn
∑
r+s=n

Br(Bs(f,g),h)− Br(f,Bs(g,h)).

Graphs act on graphs by the (iterated) Leibniz rule.
• Collect terms by using the skew-symmetry.
• What remains at ℏ2: 23 multiplied by

r r r
f g h

r
@@R��	

r
@
@@R

��	
− r r r

f g h

rHHHj����

r
��	�
���

L
R

− r r r
f g h

r
@@R��	

r
�

��	
@@R

= JacΠ(f,g,h) = 0.
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Illustration 2: Associativity up to order 3

• ⋆ • = ••+ ℏ + ℏ2
(
1
2 + 1

3 +

1
3 + 1

6

)
+ ℏ3

(
1
6 +

1
6 + 1

6 + 1
6 + 1

6 +

1
6 + 1

6 + 1
3 + 1

3 +

1
6 + 1

6 + 1
6 + 1

6

)
+O(ℏ4)

Expand (f ⋆ g) ⋆ h− f ⋆ (g ⋆ h) graphically⇝ 39 terms at ℏ3.
Vanishing is (differential) consequence of Jacobi, but how?
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Jacobi identity and its differential consequences

We consider the Jacobiator as a tri-differential operator, we
look at the differential consequences of its vanishing, and
restrict to fixed total differential orders.

JacΠ(f,g,h) = r r r
f g h

r
@@R��	

r
@
@@R

��	
− r r r

f g h

rHHHj����

r
��	�
���

L
R

− r r r
f g h

r
@@R��	

r
�

��	
@@R

= 0,

Πij∂j JacΠ(∂if,g,h) =
i r r rr@@R��	

r
@
@@R

��	

#
"
 
!

r
A
A
AU

HHj

−
i r r rrHHHj����

r
��	�
���

#
"
 
!

r
A
A
AU

HHj L
R

−
i r r rr@@R��	

r
�

��	
@@R

#
"
 
!

r
A
A
AU

HHj

= 0,

2
3Π

ij JacΠ(∂if, ∂jg,h) = 2
3

(
r r rr@@R��	

r
@
@@R

��	
r
? W

− r r rrHHHj����

r
��	�
���

r
? W

L
R − r r rr@@R��	

r
�

��	
@@R
r
? W

)
= 0.
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Jacobi identity and its differential consequences, continued

(
r r rr@@R��	

r
@
@@R

��	rXXz
CCW
R

+ r r rr@@R��	

r
@

@@R
��	
rXXz
�
�
�


)

−

(
r r rrHHHj����

r
��	�
���

rXXz�
�
��

R + r r rrHHHj����

r
��	�
���

r
AAU�

�
��

R

)

−

(
r r rr@@R��	

r
�

��	
@@R
rXXz
�
�
�


+ r r rr@@R��	

r
�

��	
@@R
rXXXXzC
CW

R
)

= 0.

Moral: looking at formal sums of graphs is useful, since we can
identify/construct differential consequences of the Jacobi
identity graphically.
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Jacobi identity and its differential consequences, continued

(
r r rr@@R��	

r
@
@@R

��	rXXz
CCW
R

+ r r rr@@R��	

r
@

@@R
��	
rXXz
�
�
�


)

−

(
r r rrHHHj����

r
��	�
���

rXXz�
�
��

R + r r rrHHHj����

r
��	�
���

r
AAU�

�
��

R

)

−

(
r r rr@@R��	

r
�

��	
@@R
rXXz
�
�
�


+ r r rr@@R��	

r
�

��	
@@R
rXXXXzC
CW

R
)

= 0.

Moral: looking at formal sums of graphs is useful, since we can
identify/construct differential consequences of the Jacobi
identity graphically.

14



Illustration 3: undetermined weights & finding relations

For n ≥ 3 direct integration becomes hard.
Start with undetermined weights, then find relations:

• skew-symmetry of graphs and weights,
• weight of mirror reflection of Γ ∈ Gn is (−1)nw(Γ),
• for some graphs the weight integrand vanishes,
• multiplicativity of the weight; factorization into primes:

× = ,

• cyclic weight relations ({Willwacher, Shoikhet}–Felder),
• formula is universal, so holds for all Poisson bi-vectors:
substitute Π into ⋆ with undetermined weights & solve
associativity equation.
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Primitive set of graphs

Definition (Primitive set of graphs)
A set of graphs is called primitive (or basic) if it contains only

• prime graphs
• of positive differential order,

and only one representative per equivalence class modulo
{skew-symmetry, mirror reflections} is contained in the set.

Weights of all graphs are expressed via weights of basic graphs.

Strategy:

• generate basic set of graphs,
• find relations between their weights.

16



Substitution

The star product formula is universal, so it is associative for
every Poisson structure.

• Evaluate associator at particular point for particular Π.
• For Π depending on a set of arbitrary functions {Fi},
consider the associator as a differential operator on f,g,h
and the Fi.

This yields relations between the weights.

Remark: associator’s (1, 2, 3)← (3, 3), (1, 5) have no primes at
ℏ4 =⇒ relations between weights at order 3.
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Result

At order 3 we have 15 basic graphs.

• Integrands vanishing: 1.
• Cyclic weight relations up to order 3.
• Substitute generic 3d Poisson, in associator up to order 4.

⇝ know all weights exactly, without calculating any integrals!

At order 4 we have 149 basic graphs.

• Integrands vanishing: 21.
• Cyclic weight relations up to order 6.
• Relations from associativity up to order 5 (in progress).

We solve the linear system of relations. This yields:

• 67 are now known exactly,
• 82 expressed via ≤ 10.
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Conclusion: summary of results

Universal w.r.t. all Poisson structures:

• We understand factorization of associativity! (Lemma)
• The ⋆-product mod O(ℏ4) known exactly.
• New linear relations between weights w(Γ ∈ G4) from ⋆

mod O(ℏ6)⇝ in progress.
• 149 weights: 67 exactly, 82 via only ≤ 10 (in progress).
• Strategy to find weights fully implemented in software.
• Factorization algorithm applied to solve another problem
(on tetrahedral flows).
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