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Deformation quantization



Groenewold’s star-product

See On the principles of elementary quantum mechanics, p. 48.

- Let R?" be phase space with coordinates (g, p).
- Observables live in C*(R?") = {f: R?" — R : f smooth}.
- Classical Poisson bracket {, } on C(R?"):

n
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- Groenewold displays a “quantum product” x such that

fxg=fg+0(h) and fxg—gxf=in{f,g}+O(R).
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Groenewold’s star-product

See On the principles of elementary quantum mechanics, p. 48.

- Let R?" be phase space with coordinates (g, p).
- Observables live in C*(R?") = {f: R?" — R : f smooth}.
- Classical Poisson bracket{ } on C*°(R?"):
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- Groenewold displays a “quantum product” x such that
fxg=fg+0(h) and fxg—gxf=Iih{f,g}+ O(K).
For convenience, put M= (S ) and 9; = 9/0x; for x = (g, p).
Formula: fx g = fg + $N70,(3(9) — NN"9:0,(dd1(9) +
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Review: Poisson brackets

Definition

A Poisson bracket {-,-} : C*°(M) x C>*(M) — C>*°(M) on a
smooth manifold M is a skew-symmetric bi-derivation
satisfying the Jacobi identity:

{f.9} = —{g.f},
{f,g+h} ={f, g} +{f, h},
{f,gh} = {f,g}h +g{f, h},

{f.{g,h}} +{9,{h.f}} + {h{f.9}} =0
forallf,g,h € C°(M)

In coordinates: {f, g} = Nig,(d;(g) = (f) < Ni L (g)
for skew-symmetric matrix of functions MY.
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Deformation quantization of Poisson manifolds

Given

- M « smooth Poisson manifold with bracket { , }.

- C*°(M) «+ smooth scalar functions on M, form a Poisson
algebra under { , } and a commutative associative unital
R-algebra under (fg)(x) = f(x)g(x).

Can we deform the product into x : A x A — A given by
fxg=fg+hBi(f,9) + W*Ba(f,g) +... forf,g e C(M),
while staying unital, associative, and such that
fxg—gxf=n{f.g} +O(r)?
Here the B; are bi-{linear, differential} operators; A = C>°(M)[A].



Deformation quantization of Poisson manifolds

Given

- M « smooth Poisson manifold with bracket { , }.
- C*°(M) «+ smooth scalar functions on M, form a Poisson
algebra under { , } and a commutative associative unital

R-algebra under (fg)(x) = f(x)g(x).
Can we deform the product into x : A x A — A given by
fxg=fg+hBi(f,9) + W*Ba(f,g) +... forf,g e C(M),
while staying unital, associative, and such that
fxg—gxf=n{f.g} +O(r)?

Here the B; are bi-{linear, differential} operators; A = C>°(M)[A].
More wishful version: can we have fx g = fg + h{f,g} + O(h?)?



Deformation quantization of Poisson manifolds, |

M. Kontsevich (1997): Yes we can!
Explicitly, on an affine manifold, let {f, g} = >, ;N"9f9;q,
Then a star product is given (up to order 2) by
f*g =fg + hNaf9g+
K (3nIn*o0.f 90,9 + NoNMo0.f 0,9 + INT9NM0,f9,0,9)
+ O(1?).
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Explicit universal formula in terms of (derivatives of) Poisson
bi-vector components M7, at all orders in k.



Deformation quantization of Poisson manifolds, |

M. Kontsevich (1997): Yes we can!
Explicitly, on an affine manifold, let {f, g} = >, ;N"9f9;q,
Then a star product is given (up to order 2) by
f*g =fg + hNaf9g+
R (3NN 90,f 00,9 + 3NN 90, f g + N NMDf 9,0,9)
+ O(1?).
Explicit universal formula in terms of (derivatives of) Poisson
bi-vector components M7, at all orders in k.
Where does it come from? Sum of weighted graphs:
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FeGnp



Graphs and weights




Kontsevich graphs in G, (n > 1):

- ninternal vertices; each has two ordered outgoing edges,

- two ordered ground vertices without outgoing edges,
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Table 1: Some Kontsevich graphs (n < 2).

NB: Ordering of edges in pictures is Left < Right.



Kontsevich graphs in G, (n > 1):

- ninternal vertices; each has two ordered outgoing edges,

- two ordered ground vertices without outgoing edges,

ANV AN

Table 1: Some Kontsevich graphs (n < 2).

NB: Ordering of edges in pictures is Left < Right.



Recipe for bi-differential operator By associated to graph T

- label edges from internal vertex with indices, say i, J,

- substitute Poisson bi-vector component M7 into the vertex,
- substitute arguments f, g into ground vertices,

- incoming edge i acts as derivative 9; on target vertex,

- multiply (differentiated) contents of vertices,

- sum over all indices.

AN VN T
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Table 2: Some bi-differential operators associated to graphs.



Star product

Kontsevich's star product is given up to O(h?) by

.*.:..+h./\.+
AN/

+ O(7).

fxg=fg+hrN"afog +
W2 (3N'NM 90, f 90,9 + N0 NM90,f 0,9 + INToN* D f 9,019
+ gc“)kﬂ”a,ﬂ’? 00,9 )
+ O(1?).



Embedding the graphs in H

- Now, about those weights w(T).
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- Now, about those weights w(T).
- EmbedNinHUR c C:
- the two ground vertices at {0,1} C R,
- internal vertices at pairwise distinct points,

- edges as geodesics w.r.t. hyperbolic metric,
i.e. vertical lines and circular segments.



Embedding the graphs in H

- Now, about those weights w(T).
- Embed N'inHUR c C:

- the two ground vertices at {0,1} C R,

- internal vertices at pairwise distinct points,

- edges as geodesics w.r.t. hyperbolic metric,
i.e. vertical lines and circular segments.

- Hyperbolic angle between vertices p,q € H:

o(p,q) = Arg (j g)



Definition
The weight of a Kontsevich graph I € G, is given by the integral

1
w(l) = G /n( )k/\1d90 Pk, Prefi(r)) A de(Pr, Pright(k))s

over Co(H) = {(p1,...,pn) € H" : p; pairwise distinct}.

For example,

w</\) z/G(H de(p, 0) A de(p,1)

by 1
@ %) e




Formal series of graphs




Our approach: formal series of graphs, modulo ...

- For a fixed Poisson structure we have a correspondence
[ — Br.

- Can extend it to formal sums of graphs:

Z er' — Z WrBr.

- What is in the kernel, for all Poisson structures?
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Our approach: formal series of graphs, modulo ...

- For a fixed Poisson structure we have a correspondence
[ — Br.
- Can extend it to formal sums of graphs:

Z er' — Z WrBr.

- What is in the kernel, for all Poisson structures?
- Skew-symmetry, and (differential consequences of) Jacobi.

- Main idea: We consider formal sums modulo these things.
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[llustration 1: Associativity up to order 2

Recall:

cremenin N (1A YN/

+ O(1?).
- Expand associator (fxg) xh — fx (g% h) in terms of graphs:

Zhn Z r(Bs(f,9), h) — Br(f, Bs(g, h)).

r4+s=n
Graphs act on graphs by the (iterated) Leibniz rule.
- Collect terms by using the skew-symmetry.
- What remains at h2: 2 5 multiplied by

AN - A L maton-o
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[llustration 2: Associativity up to order 3
— 2( 1 1
oxeo= u+h./\.+h <2./\.+ 3f/\.+

/1) (LA
AR IR LAY

o RIS IR VAN WAV &
éjkﬁvgf,é\&‘%m%;ﬁ.) +O(")

Expand (fx g) x h — fx (g = h) graphically ~ 39 terms at /°.
Vanishing is (differential) consequence of Jacobi, but how?

o=
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Jacobi identity and its differential consequences

We consider the Jacobiator as a tri-differential operator, we
look at the differential consequences of its vanishing, and
restrict to fixed total differential orders.

Jacn(f, g, h) J&lx .éé. .»4&

%l—lifjacn(ﬁ,-f, 9,9,h) = %(& - M - %) =
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Jacobi identity and its differential consequences, continued

14



Jacobi identity and its differential consequences, continued

O\
(LELE)
(rv2) -

Moral: looking at formal sums of graphs is useful, since we can
identify/construct differential consequences of the Jacobi
identity graphically.
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[llustration 3: undetermined weights & finding relations

For n > 3 direct integration becomes hard.
Start with undetermined weights, then find relations:

- skew-symmetry of graphs and weights,

- weight of mirror reflection of I' € G, is (—1)"w(I),

- for some graphs the weight integrand vanishes,

- multiplicativity of the weight; factorization into primes:

VANSANSTAN

- cyclic weight relations ({Willwacher, Shoikhet}-Felder),

- formula is universal, so holds for all Poisson bi-vectors:
substitute I into « with undetermined weights & solve
associativity equation.

15



Primitive set of graphs

Definition (Primitive set of graphs)
A set of graphs is called primitive (or basic) if it contains only

- prime graphs

- of positive differential order,

and only one representative per equivalence class modulo
{skew-symmetry, mirror reflections} is contained in the set.

Weights of all graphs are expressed via weights of basic graphs.
Strategy:

- generate basic set of graphs,

- find relations between their weights.



Substitution

The star product formula is universal, so it is associative for
every Poisson structure.

- Evaluate associator at particular point for particular M.

- For N depending on a set of arbitrary functions {F;},
consider the associator as a differential operator on f, g, h
and the F;.

This yields relations between the weights.

Remark: associator’s (1,2,3) < (3,3),(1,5) have no primes at
h* = relations between weights at order 3.



At order 3 we have 15 basic graphs.

- Integrands vanishing: 1.
- Cyclic weight relations up to order 3.
- Substitute generic 3d Poisson, in associator up to order 4.

~ know all weights exactly, without calculating any integrals!



At order 3 we have 15 basic graphs.

- Integrands vanishing: 1.
- Cyclic weight relations up to order 3.
- Substitute generic 3d Poisson, in associator up to order 4.

~ know all weights exactly, without calculating any integrals!
At order 4 we have 149 basic graphs.

- Integrands vanishing: 21.
- Cyclic weight relations up to order 6.
- Relations from associativity up to order 5 (in progress).

We solve the linear system of relations. This yields:

- 67 are now known exactly,
- 82 expressed via < 10.



Conclusion: summary of results

Universal w.rt. all Poisson structures:

- We understand factorization of associativity! (Lemma)
- The x-product mod O(A*) known exactly.

- New linear relations between weights w(I' € G,) from %
mod O(hP) ~ in progress.

- 149 weights: 67 exactly, 82 via only < 10 (in progress).
- Strategy to find weights fully implemented in software.

- Factorization algorithm applied to solve another problem
(on tetrahedral flows).

19
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