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GROENEWOLD (1946)

Main sources for Groenewold: von Neumann (1927, 1932) & Weyl (1927, 1931)

“Our problems are about a: the correspondence between physical quantities
and quantum operators (quantization) f: the possibility of understanding the
statistical character of QM by averaging over uniquely determined processes
as in classical statistical mechanics Gnterpretation)” {a: Weyl, f: von Neumann]}

One of the very few papers in the literature that relates o and P
Quantization, hidden variables, measurement, entanglement, EPR

Impossibility of quantization respecting algebraic structure of classical
mechanics (Groenewold-van Hove Theorem © Geometric Quantization)

“Star-product” (deformation of classical pointwise multiplication, which is
recovered in limit 72 = 0) and Wigner function from Weyl's quantization rule




WEYL ON QUANTIZATION

*Weyl (1927) distinguished two very similar questions in QM:

I.How to construct (i.e. mathematically) the self-adjoint operators
corresponding to physical observables (“left open by von Neumann”)

2.What is the physical significance of these operators? (“solved by vIN”)
Group theory answers 1. (defining a theory, cf. Wigner: simplifying a theory)
*Weyl (re)interpreted canonical commutation relations [p,q] = -ifi as

projective unitary representation of R* (or representation of Heis group)

p ™ unitary representation U of R: U(a) = exp(ap/h)

} [U@),V(b)] =0
q ™ unitary representation V of R: V(b) = exp(ivq)

*Weyl’s quantization formula for phase space functions f(p,q) added in 1931




SY NOPSIS

*Weyl’s views on quantization (1927-28) bifurcated:

I. Groenewold’s paper (1946): downplaying symmetry;
emphasizing deformation and classical limit,

2. Mackey’s theory of quantization (1968) as induced
group representations (“Weyl’s Program”), vice versa

* Rieffel’s strict deformation quantization (1989)
realized by Lie groupoid C*-algebras (1998)
provides synthesis (“Weyl - Groenewold Program”)
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MACKEY'S QUANTIZATION

* Mackey breaks phase space symmetry between p and g; regards
CCR [p,q] = -7 as infinitesimal system of imprimitivity:

p ™ 1) unitary representation of R: U(a) = exp(iap/h)
q = 2) projection-valued measure E — P(E) on R

CCR w 3) Covariance condition U(a)P(E)U(a)* = P(a- E)

* Generalization: group G acts on (configuration) space M

1) unitary representation of G on Hilbert space H
2) projection-valued measure PVM) on M (on same H)

3) Covariance condition U(gP(E)U(g)* = P(g- E)




INDUCED REPRESENTATIONS

*Quantization a la Mackey = representation theory of
systems of imprimitivity, with important special case:

*If G acts transitively, so M = G/H, then there is a natural
bijective correspondence (preserving unitary equivalence)
between systems of imprimitivity and continuous unitary
representations of G induced from unitary reps of H

Recovers uniqueness of the CCR: G = M = R’, H = {e}

“Explains” spin: G = E(3) = SOG) X R’, M = R’, H= SO(3)




COMMUTATION RELATIONS

*G Lie group, M manifold, system of imprimitivity i.e.
unitary rep U(G) on Hilbert space H plus G-covariant

projection-valued measure E +— P(E) on M in H, then,
for X, Y in Lie (G) and C™ functions f, g on M, obtain
CCR for “momentum” and “position” operators:

QrX) = ihdUX) and Qn(f) = (mdEX) f(x)

[QX), QY] =i QuIX,YD, 1Qn(h), Qn(g@l =0,

[QnX), Q@] =11 Qu(Xumf), (Xum vector field on M)




GROUPOID C*-ALGEBRAS

* Groupoid = small category where each arrow is invertible = “group” with
partial multiplication (but inverse defined everywhere), e.g. space I' = M, or:

1) pair groupoid I = M x M, product (x,y) - ', y) defined iff X’ = y; result (x, y’)

2) semi-direct product groupoid I = G X M: given G-actionon M, asaset['=Gx M
with product (g, ) - (h, y) defined iff y = g'x, resulting in (gh, x)

*C*-algebra = “nice” algebra of bounded operators on Hilbert space, also
defined abstractly, with ensuing representation theory on Hilbert spaces,
like groups (Groningen C*mathematical physics school: Hugenholtz, Winnink)

* Lie groupoid canonically G defines C*-algebra C*(G) (Connes, 1980s)

*Systems of imprimitivity for given G-action on M (and hence Mackey’s
quantization) bijectively correspond to representations of corresponding

semi-direct product groupoid C*-algebra C*(G X M) (= G 4 Co(M))
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INTERIM SCORI

* Mackey’s development of Weyl’s quantization program (perhaps
reformulated in terms of semi-direct Lie groupoid C*-algebras)
is entirely based on symmetry and operator theory

* Groenewold’s development of Weyl’s program in terms of
deformation & classical limit (downplaying symmetry) seems lost

*Best of both worlds is possible: Lie groupo:d C*-algebras are
“deformations” of Lie algebroid Poisson algebras/manifolds

*This also justifies the (heavy) groupoid & C*-algebra language!

*Settings for deformation quantization: formal (= purely algebraic)
(Berezin, Flato, ..., Kontsevich) or strict (= C*-algebraic) (Rieffel)




STRICT |

)EFORMATION QUANTIZATION

* Poisson manifold (Weinstein, 1983) is manifold with Lie bracket on
(commutative) algebra of smooth functions satisfying a Leibniz rule

*Continuous field of C*-algebras (Dixmier, 1962) is (not necessarily

*Strict quantization of Poisson manifold P is continuous field of
C*-algebras over I C [0, 1] with commutative C*-algebra Ao= Co(P)

and non-commutative C*-algebras at N > 0, plus guantization maps

Qn: Ao = Ansatistying the Dirac - Groenewold - Rieffel condition

lim

h—0

%[Qh(f)v Qn(g)] — Qrn({f,9})]| =0




LIE ALGEBROIDS

* Lie algebroid over manifold M is vector bundle p: E—=M equipped
with second projection a: E—=TM (anchor map) and Lie bracket on
smooth sections s of E—=M such that {s, f-s’} = f-{s,s’l + a(s)f- s’

*Each Lie groupoid I' (which is a special category over some object/base
space M) defines a Lie algebroid Lie(I') over the same base space

*Examples: Lie group wLie algebra, smooth pair groupoid M x M wTM,
semi-direct product I’ = G X M wm Lie(G) X M (Lie bracket: G-action)

*Key point: dual bundle E* to Lie algebroid E is canonically a Poisson manifold

(Courant, Weinstein, 1990), generalizing Lie-Poisson bracket on Lie(G)*:
1X,Y]} ={X, Y]} where X&E Lie(G3) defines (linear and hence smooth)

function X on Lie(G)* by X(8) = 6(X), where 6 € Lie(G)*




MAIN THEOREM

el@ = allochra @)
m- Lie algebroid Lie(I')

*Lie algebroid Lie(I) =~ m Poisson manifold Lie(I)*

*Lie groupoid I

*Fibers Ao= Co(Lie(I)*) at i =0 and Ar=C*(D atallfi >0
(trivially glued) form a continuous field of C*-algebras

*Generalized Weyl quantization map satisfies the Dzrac -
Groenewold - Rieffel condition (relating commutator to PB)

C*(Il) is a strict deformation quantization of Lie(I)*
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*The continuous cross-sections of a continuous field of

C*-algebras (An) form a C*-algebra A (from which

fibers An and continuity structure can be recovered)

* In our case A is itself a groupoid C*-algebra (viz. of

Connes’s tangent groupoid to the given Lie groupoid I')

*This also provides a technique to prove Atiyah-Singer

type index theorems (so these are related to quantization!)




SUMMARY

* Weyl’s program of constructing the operators of quantum
mechanics from symmetry arguments can be carried out in the
spirit of Groenewold’s emphasis on deformation and classical limit

*Result: C*(I) is a strict deformation quantization of Lie(I)*
Generalizes Mackey’s quantization of group actions by systems of
imprimitivity (which comes out as the special case I' = G X M)

* Weyl’s Problem 2: “What is the physical significance of these operators?”
Groenewold’s Problem [3: “understanding the statistical character of QM
by averaging as in classical statistical mechanics (interpretation)” remain!
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