QUANTIZATION AND NONCOMMUTATIVE GEOMETRY

Klaas Landsman Radboud Universiteit Nijmegen

Symposium on advances in semi-classical methods in mathematics and physics Groningen, 20 October 2016 In honour of H.J. Groenewold

QUANTIZATION AND GROENEWOLD

Klaas Landsman

RADBOUD UNIVERSITEIT NIJMEGEN

Symposium on advances in semi-classical methods in mathematics and physics Groningen, 20 October 2016 In honour of H.J. Groenewold

GROENEWOLD (1946)

- Main sources for Groenewold: von Neumann (1927, 1932) & Weyl (1927, 1931)
- "Our problems are about α: the correspondence between physical quantities and quantum operators (quantization) β: the possibility of understanding the statistical character of QM by averaging over uniquely determined processes as in classical statistical mechanics (interpretation)" [α: Weyl, β: von Neumann]
- One of the very few papers in the literature that *relates* α and β: Quantization, hidden variables, measurement, entanglement, EPR
- Impossibility of quantization respecting algebraic structure of classical mechanics (Groenewold-van Hove Theorem Geometric Quantization)
- "Star-product" (deformation of classical pointwise multiplication, which is recovered in limit $\hbar \to 0$) and Wigner function from Weyl's quantization rule

WEYL ON QUANTIZATION

- Weyl (1927) distinguished two very similar questions in QM:
 - I. How to construct (i.e. mathematically) the self-adjoint operators corresponding to physical observables ("left open by von Neumann")
 - 2. What is the physical significance of these operators? ("solved by vN")
 - Group theory answers 1. (defining a theory, cf. Wigner: simplifying a theory)
- Weyl (re)interpreted canonical commutation relations $[p,q] = -i\hbar$ as *projective* unitary representation of \mathbb{R}^2 (or representation of Heis group)
 - p unitary representation U of \mathbb{R} : U(a) = exp(iap/ \hbar)
 - q \blacktriangleright unitary representation V of \mathbb{R} : V(b) = exp(ivq)
- $[U(a),V(b)]\neq 0$
- Weyl's quantization formula for phase space functions f(p,q) added in 1931

SYNOPSIS

- Weyl's views on quantization (1927-28) bifurcated:
 - I. **Groenewold's** paper (1946): downplaying symmetry, emphasizing *deformation* and *classical limit*,
 - 2. Mackey's theory of quantization (1968) as induced group representations ("Weyl's Program"), vice versa
- **Rieffel's** *strict deformation quantization* (1989) realized by Lie groupoid C*-algebras (1998) provides synthesis ("Weyl Groenewold Program")

Hermann Weyl (1885-1955)

George Mackey (1916-2006)

"Hip" Groenewold (1910-1996)

Marc Rieffel (1937)

MACKEY'S QUANTIZATION

- Mackey breaks phase space symmetry between p and q; regards $CCR[p,q] = -i\hbar$ as infinitesimal system of imprimitivity:
 - p rackspace 1 unitary representation of \mathbb{R} : U(a) = exp(iap/ \hbar)
 - q \longrightarrow 2) projection-valued measure $E \mapsto P(E)$ on \mathbb{R}
 - CCR \longrightarrow 3) Covariance condition U(a)P(E)U(a)* = P(a · E)
- Generalization: group G acts on (configuration) space M
 - 1) unitary representation of G on Hilbert space H
 - 2) projection-valued measure (PVM) on M (on same H)
 - 3) Covariance condition U(g)P(E)U(g)* = P(g · E)

INDUCED REPRESENTATIONS

- Quantization à la Mackey = representation theory of systems of imprimitivity, with important special case:
- If G acts transitively, so M ≅ G/H, then there is a natural bijective correspondence (preserving unitary equivalence) between systems of imprimitivity and continuous unitary representations of G induced from unitary reps of H

Recovers uniqueness of the CCR: $G = M = \mathbb{R}^3$, $H = \{e\}$

"Explains" spin: $G = E(3) = SO(3) \times \mathbb{R}^3$, $M = \mathbb{R}^3$, H = SO(3)

COMMUTATION RELATIONS

•G Lie group, M manifold, system of imprimitivity i.e. unitary rep U(G) on Hilbert space \mathcal{H} plus G-covariant projection-valued measure $E \mapsto P(E)$ on M in \mathcal{H} , then, for X, Y in Lie (G) and C^{∞} functions f, g on M, obtain CCR for "momentum" and "position" operators:

 $Q_h(X) = i\hbar dU(X)$ and $Q_h(f) = \int_M dE(x) f(x)$

 ${Q_{\hbar}(X), Q_{\hbar}(Y)} = i\hbar Q_{\hbar}([X,Y]), {Q_{\hbar}(g)} = 0,$

 $\{Q_h(X), Q_h(f)\} = i\hbar Q_h(X_M f), \quad (X_M \text{ vector field on } M)$

GROUPOID C*-ALGEBRAS

- **Groupoid** = small category where each arrow is invertible \approx "group" with partial multiplication (but inverse defined everywhere), e.g. space Γ = M, or:
- 1) pair groupoid $\Gamma = M \times M$, product $(x,y) \cdot (x',y')$ defined iff x' = y, result (x,y')
- 2) semi-direct product groupoid $\Gamma = G \times M$: given G-action on M, as a set $\Gamma = G \times M$ with product $(g, x) \cdot (h, y)$ defined iff $y = g^{-1}x$, resulting in (gh, x)
 - C*-algebra = "nice" algebra of bounded operators on Hilbert space, also defined abstractly, with ensuing representation theory on Hilbert spaces, like groups (Groningen C*mathematical physics school: Hugenholtz, Winnink)
 - Lie groupoid canonically G defines C*-algebra C*(G) (Connes, 1980s)
 - Systems of imprimitivity for given G-action on M (and hence Mackey's quantization) bijectively correspond to representations of corresponding semi-direct product groupoid C*-algebra C*($G \times M$) ($\cong G \times C_o(M)$)

INTERIM SCORE

- Mackey's development of Weyl's quantization program (perhaps reformulated in terms of semi-direct Lie groupoid C*-algebras) is entirely based on symmetry and operator theory
- Groenewold's development of Weyl's program in terms of deformation & classical limit (downplaying symmetry) seems lost
- •Best of both worlds is possible: Lie *groupoid* C*-algebras are "deformations" of Lie *algebroid* Poisson algebras/manifolds
- This also justifies the (heavy) groupoid & C*-algebra language!
- Settings for deformation quantization: formal (= purely algebraic) (Berezin, Flato, ..., Kontsevich) or strict (= C*-algebraic) (Rieffel)

STRICT DEFORMATION QUANTIZATION

- Poisson manifold (Weinstein, 1983) is manifold with Lie bracket on (commutative) algebra of smooth functions satisfying a Leibniz rule
- Continuous field of C*-algebras (Dixmier, 1962) is (not necessarily locally trivial!!!!!!!!) fiber bundle whose fibers are "glued" C*-algebras
- Strict quantization of Poisson manifold P is continuous field of C*-algebras over $I \subseteq [0, 1]$ with commutative C*-algebra $A_0 = C_0(P)$ and non-commutative C*-algebras at $\hbar > 0$, plus quantization maps

 $Q_h: A_0 \rightarrow A_h$ satisfying the Dirac - Groenewold - Rieffel condition

$$\lim_{\hbar \to 0} \left\| \frac{i}{\hbar} [Q_{\hbar}(f), Q_{\hbar}(g)] - Q_{\hbar}(\{f, g\}) \right\|_{A_{\hbar}} = 0$$

LIE ALGEBROIDS

- **Lie algebroid** over manifold M is vector bundle p: $E \rightarrow M$ equipped with *second* projection a: $E \rightarrow TM$ (anchor map) *and* Lie bracket on smooth sections s of $E \rightarrow M$ such that $\{s, f \cdot s'\} = f \cdot \{s, s'\} + a(s)f \cdot s'$
- •Each Lie groupoid Γ (which is a special category over some object/base space M) defines a Lie algebroid Lie(Γ) over the same base space
- Examples: Lie group \blacktriangleright Lie algebra, smooth pair groupoid M x M \blacktriangleright TM, semi-direct product $\Gamma = G \rtimes M \blacktriangleright$ Lie(G) \rtimes M (Lie bracket: G-action)
- Key point: dual bundle E^* to Lie algebroid E is canonically a Poisson manifold (Courant, Weinstein, 1990), generalizing Lie-Poisson bracket on Lie(G)*: $\{\underline{X},\underline{Y}\} = [\underline{X},\underline{Y}]$ where $X \in \text{Lie}(G)$ defines (linear and hence smooth) function \underline{X} on Lie(G)* by $X(\theta) = \theta(X)$, where $\theta \in \text{Lie}(G)$ *

MAIN THEOREM

•Lie groupoid Γ

- ightharpoonup C*-algebra C*(Γ)
- ► Lie algebroid Lie(Γ)
- Lie algebroid Lie(Γ)
 Poisson manifold Lie(Γ)*
- Fibers $A_0 = C_0(\text{Lie}(\Gamma)^*)$ at $\hbar = 0$ and $A_h = C^*(\Gamma)$ at all $\hbar > 0$ (trivially glued) form a continuous field of C^* -algebras
- Generalized Weyl quantization map satisfies the *Dirac Groenewold Rieffel* condition (relating commutator to PB)
 - $C^*(\Gamma)$ is a strict deformation quantization of Lie(Γ)*

A WORD ABOUT THE PROOF

- The continuous cross-sections of a continuous field of C*-algebras (Aħ) form a C*-algebra A (from which fibers Aħ and continuity structure can be recovered)
- In our case A is itself a groupoid C*-algebra (viz. of Connes's tangent groupoid to the given Lie groupoid Γ)
- This also provides a technique to prove Atiyah-Singer type index theorems (so these are related to quantization!)

SUMMARY

- Weyl's program of constructing the operators of quantum mechanics from symmetry arguments can be carried out in the spirit of Groenewold's emphasis on deformation and classical limit
- Result: $C^*(\Gamma)$ is a strict deformation quantization of $Lie(\Gamma)^*$ Generalizes Mackey's quantization of group actions by systems of imprimitivity (which comes out as the special case $\Gamma = G \times M$)
- Weyl's Problem 2: "What is the physical significance of these operators?" Groenewold's Problem β: "understanding the statistical character of QM by averaging as in classical statistical mechanics (interpretation)" remain!

LITERATURE

- H. Weyl, Gruppentheorie und Quantenmechanik (Teubner, 1928, 2nd ed. 1931)
- H.J. Groenewold, On the principles of elementary quantum mechanics, *Physica* 12, 405-460 (1946)
- G.W. Mackey, Induced Representations of Groups and Quantum Mechanics (Benjamin, 1968)
- M.A. Rieffel, Quantization and C*-algebras, Contemp. Mathematics 167, 67-97 (1994)
- N.P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics (Springer, 1998)
- *N.P. Landsman & B. Ramazan, Quantization of of Poisson algebras associated to Lie algebroids, *Contemp. Mathematics* 282, 159-192 (2001)
- N.P. Landsman, Lie groupoids and Lie algebroids in physics and noncommutative geometry, J. of Geometry and Physics 56, 24-54 (2006)