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1. Overview

Context of this talk: high-energy physics .

Now, all of our current knowledge of high-energy physics is contained
in the so-called Standard Model (SM).

Incomplete list of SM founding fathers:

. . . , Yang and Mills, 1954; Glashow, 1961;
Englert and Brout, 1964; Higgs, 1964; Guralnik, Hagen, and Kibble, 1964;
Fadde’ev and Popov, 1967;
Weinberg, 1967; Salam, 1968; Glashow, Iliopoulos, and Maiani, 1970;
’t Hooft, 1971; ’t Hooft and Veltman, 1972;
Weinberg, 1973; Fritzsch, Gell-Mann, and Leutwyler, 1973;
Gross and Wilczek, 1973; Politzer, 1973; . . .
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1. Overview

SM:

Elementary particles of the SM [https://commons.wikimedia.org/wiki].
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1. Overview

But there is more to the SM than particles and Feynman diagrams.

In the SU(3) Yang–Mills theory of the QCD sector of the SM:

the instanton I [Belavin, Polyakov, Schwartz, and Tyupkin, 1975].

In the SU(2)× U(1) Yang–Mills–Higgs theory of the electroweak SM:

the sphaleron S [Klinkhamer and Manton, 1984].
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1. Overview

Terminology:

an “instanton” is a localized, finite-action solution of the classical field
equations for imaginary time τ (τ2 ≤ 0);

a “soliton” is a static, stable , finite-energy solution of the classical
field equations for real time t (t2 ≥ 0);

a “sphaleron” is a static, unstable , finite-energy solution of the
classical field equations for real time t.
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1. Overview

Generally speaking, instantons (and solitons) are relevant to the
equilibrium properties of the theory, whereas sphalerons are relevant
to the dynamics .

Specifically, the two types of nonperturbative solutions of the SM are
relevant to the following physical effects:

instantons for the gluon condensate and the η′ mass,

sphalerons for the origin of the cosmic matter–antimatter asymmetry.
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1. Overview

OUTLINE:

1. Overview

2. SU(2) x U(1) sphaleron S

3. Spectral flow and anomalies

4. SU(3) sphaleron Ŝ

5. Conclusion

6. References
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2.0 S – General remarks

How to discover nonperturbative solutions, such as the instanton I or
the sphaleron S?

Well, just follow this recipe:

1. make an appropriate Ansatz for the fields;

2. solve the resulting reduced field equations.

Of course, the subtlety in getting the “appropriate” Ansatz of step 1.

Here, topological insights have played a role.
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2.1 SU(2) x U(1) sphaleron S

The electroweak Standard Model (EWSM), with sin2 θw ≈ 0.23 and
mH ≈ 125 GeV, has, most likely, no topological solitons but does have
two sphalerons, S [1] and S∗ [2]. The extended SU(3) theory also has

a third sphaleron, Ŝ [3].

The solution S is the best known [1, 4] and its energy is numerically
equal to

ES ∼ 10 TeV ,

and parametrically equal to

ES ∼ v/g ∼ MW /α ,

with the Higgs vacuum expectation value v, the SU(2) coupling constant g,
the mass MW = 1

2 g v of the charged vector bosons W±,

and the fine-structure constant α = e2/(4π) = g2 sin2 θw/(4π) .
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2.1 SU(2) x U(1) sphaleron S

In simple terms, the sphaleron solution S of the EWSM

� is a slightly elongated blob of field energy with size of order
1/MW ∼ 10−2 fm and energy density of order (1/α)M4

W ;

� has “tangled” fields (hence, the existence of fermion zero modes;
see the discussion on spectral flow below) ;

� corresponds to an unstable configuration of fields, which, after a
small perturbation, decays to the vacuum by emission of many
particles (number of order 1/α ∼ 100) .

But how does S fit in configuration space?
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2.1 SU(2) x U(1) sphaleron S

One particular slice of configuration space (more details later):

0-1 1
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Figure 1: Potential energy over a slice of configuration space.

Small oscillations near the vacuum with NCS = 0 (or any other integer)
correspond to the SM elementary particles on the chart of p. 3.

The nontrivial structure of Fig. 1 is directly relevant to the main physics
application of the sphaleron S, namely electroweak baryon number
violation, to which we turn now.
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2.2 Electroweak baryon number violation

Conditions for cosmological baryogenesis [Sakharov, 1967]:

1. C and CP violation Yes (SM)

2. Thermal nonequilibrium Yes (FRW)

3. Baryon number (B) violation ?

Strictly speaking, only one established theory is expected to have
B violation:

the electroweak Standard Model (EWSM).

[Side remark: the ultimate fate of black holes is uncertain and,
hence, it is not known if black-hole physics violates baryon number
conservation or not.]
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2.2 Electroweak baryon number violation

The relevant physical processes of the EWSM at

T ≪ MW ≈ 102 GeV ,

have a rate (tunneling through the barrier of Fig. 1) which is negligible [7],

Γ(tunneling) ∝ exp[− 2SBPST / ~ ] = exp[− 4π sin2 θw /α ] ≈ e−400 ≈ 0 ,

with an exponent given by twice the action of the BPST instanton.

For T & 102 GeV, the rate (thermal excitation over the barrier of Fig. 1)
contains a Boltzmann factor [1],

Γ(thermal) ∝ exp[−ES / (k T ) ] ,

in terms of the barrier height, the sphaleron energy ES .

Note the respective factors of ~ and k in the two rates Γ: different physics!
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2.2 Electroweak baryon number violation

Clearly, we should study electroweak baryon number violation (EWBNV)
for the conditions of the early universe,

T ∼> 102 GeV .

This is a difficult problem, but entirely well-posed. Obviously, we must
really deal with the fermions [7–13].

The following sections are, however, rather technical and will be
skipped for the moment:

2.3 EWBNV – Classic result

2.4 EWBNV – Open question

2.5 EWBNV – Partial answer
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3. Spectral flow and anomalies

Three sphalerons (S, S∗, and Ŝ) are relevant to the SM, each related
to having a nontrivial vacuum structure .

Different parts of configuration space look like a line segment, a disk,
and and a ball, with vacuum fields on their boundaries:

NCL of vacua

S*
VSV

S

NCS of vacua

where NCL stands for noncontractible loop and NCS for noncontractible
sphere.

Note that the V–S–V′ line segment above corresponds to a slice of
configuration space. Identifying V and V′ gives a circle, unwrapping it
gives the real line, and then evaluating the corresponding field
energies gives the sine-square structure of Fig. 1.
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3. Spectral flow and anomalies

A useful diagnostic over configuration space can be obtained from the
eigenvalue equation of the time-dependent Dirac Hamiltonian:

H(~x, t)Ψ(~x, t) = E(t)Ψ(~x, t) ,

where H is a functional of the background gauge field ~A(~x, t).

Then, fermion number violation via the sphaleron S is related to the
spectral flow F . See, e.g., Refs. [8, 13].

Definition:

F [ tf , ti ] is the number of eigenvalues of the Dirac Hamiltonian that
cross zero from below minus the number of eigenvalues that cross
zero from above, for the time interval [ ti, tf ] with ti < tf .
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3. Spectral flow and anomalies

All three sphalerons are related to a generalized form of spectral flow
(with fermion masses from the Higgs field). The picture for S is well

known (cone-like for S∗ and Ŝ ):
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Continuous Spectrum

Continuous Spectrum

S

In turn, these sphalerons are associated with anomalies :

S with the chiral U(1) anomaly [Adler–Bell–Jackiw, 1969],
S∗ with the chiral nonperturbative SU(2) anomaly [Witten, 1982],

Ŝ with the chiral non-Abelian anomaly [Bardeen, 1969].
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3. Spectral flow and anomalies

The sphalerons are then relevant to the following physical processes:

S to B+L violation for the matter-antimatter asymmetry in the early universe,

S∗ to multiparticle production in high-energy scattering with
√
s ≥ ES∗ ,

Ŝ to nonperturbative dynamics of QCD.

The physics application of S is well known, even though far from being
understood completely (as discussed before, but in the skipped parts...).

For the rest of the talk, let us focus on Ŝ, which has an interesting
mathematical structure but a less clear physics application.
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4.0 S-hat – Preliminary remarks

Before discussing the SU(3) sphaleron Ŝ, recall three basic facts of S.

First, the SU(2) sphaleron S can be embedded in SU(3) YMH theory
[strictly speaking, the embedded solution is the SU(2)× U(1) sphaleron].

Second, the SU(2) gauge and Higgs fields of S are determined by
two radial functions f(r) and h(r).

Third, the SU(2) sphaleron S has
a so-called hedgehog structure ,
i.e., a topologically nontrivial map

S
(space)
3 → SU

(internal)
2 = S

(internal)
3 .

Here a sketch of S(space)
2 → S

(internal)
2 :
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4.1 SU(3) sphaleron S-hat

Now turn to Ŝ, which is very different.

First, Ŝ exists in SU(3) YMH but not in SU(2) YMH theory.

Second, the self-consistent Ansatz of Ŝ requires eight axial functions
for the gauge field and three axial functions for the fundamental Higgs field.

Third, Ŝ does not have a hedgehog structure but a Jupiter-like structure :

for a given half-plane through the symmetry–axis with azimuthal angle
φ, the parallel components Ar and Aθ involve only one particular su(2)
subalgebra of su(3), whereas the orthogonal component Aφ excites
precisely the other five generators of su(3).
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4.1 SU(3) sphaleron S-hat

As to the reduced field equations, they are very difficult to solve,
even numerically.

Still it is possible to obtain an upper bound on the energy [3]:

EŜ

∣∣∣
λ/g2=0

< 1.72× ESU(2)−S , (2)

with ESU(2)−S ≡ 1.52× 4πv/g and λ the quartic Higgs coupling
constant.

After several years of work, the numerical solution of the reduced field
equations has been obtained recently [K & Nagel, 2016] and the
numerical value for the energy is:

EŜ

∣∣∣
λ/g2=0

= (1.160± 0.005)× ESU(2)−S . (3)

van Swinderen Huys, October 21, 2016 (v1) – p. 21



4.1 SU(3) sphaleron S-hat
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Figure 2: Ŝ energy-density contours (in units of g2 v4) for λ/g2 = 0.
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4.1 SU(3) sphaleron S-hat

Mathematically, it is remarkable that the energy of Ŝ with eight gauge
fields is close to that of S with only four gauge fields. Most likely, this is
due to the highly-ordered (Jupiter-like) structure mentioned earlier.

Physically, it is important that the Ŝ barrier is low, as it implies that
related processes are little suppressed at high energies/temperatures.

For the QCD version of Ŝ, the energy scale would be set by quantum
effects, Λ ∼ 100 MeV.
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5. Conclusion

The mathematical physics of the sphaleron solutions is relatively
straightforward. Really difficult are the physics applications.

Let us mention three outstanding puzzles related to the three

sphalerons S, S∗, and Ŝ :

First, how does the B+L violation proceed microscopically at high
energies or high temperatures (the scale being set by ES ∼ 10 TeV)
and what is the proper selection rule?

Second, does EWSM multiparticle production in high-energy scattering
with parton center-of-mass energy

√
s ∼ ES∗ ∼ 20 TeV reach the

unitarity limit?

Third, do the Ŝ gauge fields produce new physical effects in QCD?
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2.3 EWBNV – Classic result (skipped)

Consider SU(2) Yang–Mills–Higgs theory with vanishing Yukawa
couplings. Actually, forget about the Higgs, which may be reasonable
above the EW phase transition.

Triangle anomaly in the AAA-diagram, provided the VVV-diagram is
anomaly-free [14, 15].

The gauge vertices of the EWSM are V–A and must be nonanomalous
(gauge invariance is needed for unitarity). Then, the B + L current
becomes anomalous [7]:

∆(B − L) = 0 ,

∆(B + L)︸ ︷︷ ︸
change of fermion number

= 2Nfam︸ ︷︷ ︸
integer

× ∆NCS︸ ︷︷ ︸
gauge field characteristic

.
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2.3 EWBNV – Classic result (skipped)

In the A0 = 0 gauge, one has the Chern–Simons number

NCS(t) = NCS[ ~A(~x, t)]

and

∆NCS ≡ NCS(tout)−NCS(tin) .

For the record (using differential forms and the Yang–Mills field
strength 2-form F ≡ dA+A2), we have

NCS[A] ≡
1

8π2

∫

M3

(
AdA+

2

3
A3

)
=

1

8π2

∫

M3

(
AF − 1

3
A3

)
.
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2.3 EWBNV – Classic result (skipped)

’t Hooft [7] calculated the tunneling amplitude using the BPST instanton.
This BPST instanton, which is a finite action solution over Euclidean
spacetime (imaginary-time theory), gives

∆NCS = Q[A finite action] ∈ Z ,

where the topological charge Q is the winding number of the map

S3
∣∣
|x|=∞

→ SU(2) ∼ S3 .

This holds only for transitions from near-vacuum to near-vacuum, i.e.,
at very low temperatures or energies. As mentioned above, the rate is
then effectively zero, but, at least, ∆(B + L) is an integer , namely
2Nfam ×∆NCS.
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2.4 EWBNV – Open question (skipped)

For real-time processes at nonzero energies or temperarures, the
topological charge Q is, in general, noninteger .

Hence, the question [12]

∆(B + L) ∝ which gauge field characteristic ?

In the following, we consider pure SU(2) Yang–Mills theory with a
single isodoublet of left-handed fermions.

(The fermion number B + L of the EWSM follows by multiplying with
2Nfam. Recall that B − L remains conserved in the EWSM.)

Furthermore, the gauge fields will be called dissipative if their energy
density approaches zero uniformly as t → ±∞.
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2.5 EWBNV – Partial answer (skipped)

Spectral flow was already defined in Sec. 3. Here a sketch for the NCL
through the sphaleron S:

E = 0

Figure 3: Spectral flow with F [ tf , ti ] = +1 − 0 = +1. Filling the

(infinite) Dirac sea at the initial time ti results in one extra fermion at the

final time tf .
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2.5 EWBNV – Partial answer (skipped)

Strongly-dissipative∗ SU(2) gauge fields at finite energy have [8, 9, 10]:

F = ∆NCS[A associated vacuum] ≡ ∆Nwinding ∈ Z .

Now, there exist three weakly-dissipative,∗ spherically symmetric
gauge field solutions [Lüscher & Schechter, 1977] with

1. (low energy) ∆Nwinding = 0 and F = 0 ,

2. (moderate energy) ∆Nwinding = 1 and F = 1 ,

3. (high energy) ∆Nwinding = 1 and F = −1 .

⇒ [F 6= ∆Nwinding ] spherically symmetric fields
.

—————————————————————————
∗ For the precise definition of strongly/weakly-dissipative, see [11].
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2.5 EWBNV – Partial answer (skipped)

In fact, there is another gauge field characteristic [11]:

∆Ntwist = 0 for case 1 and 2 ,

∆Ntwist = −2 for case 3 .

⇒ [F = ∆Nwinding +∆Ntwist ] spherically symmetric fields
.

For weakly-dissipative or nondissipative gauge fields, one has thus

∆(B + L) = 2Nfam ×
(
∆NCS [A associated vacuum] + extra terms

)
.

But the “extra terms” are not known in general [12].

In short, the microphysics of EWBNV is not fully understood.
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