Quantum speed limit vs. classical displacement energy

Leonid Polterovich, Tel Aviv

Groningen, October 2016

Joint work with Laurent Charles (Paris)

- (同) - (目) - (目)

Symplectic topology (Conley, Zehnder, Gromov, Eliashberg, Floer, Hofer,..., 1980 – ...), discovered surprising rigidity phenomena involving symplectic manifolds, their subsets, and their diffeomorphisms.

Question: What are quantum footprints of symplectic rigidity?

Difficulty: Quantum-classical correspondence is not sharp (H.J. Groenewold, 1946)

Today's story: Quantum counterpart of symplectic displacement energy, a fundamental symplectic invariant (Hofer, 1990)

イロト 不得 とうせい かほとう ほ

H- finite dimensional complex Hilbert space $\mathcal{L}(H)$ - Hermitian operators, observables $\mathcal{S}(H)$ - quantum states, $\rho \in \mathcal{L}(H)$, $\rho \ge 0$, trace $(\rho) = 1$.

Fidelity: $\theta, \sigma \in S(H)$ $\Phi(\theta, \sigma) = \|\sqrt{\theta}\sqrt{\sigma}\|_{tr}$. Measures overlap between quantum states.

Example: For pure states $\xi, \eta \in H$, $|\xi| = |\eta| = 1$, $\Phi(\xi, \eta) = |\langle \xi, \eta \rangle|$.

 $F_t \in \mathcal{L}(H)$ - quantum Hamiltonian. Schrödinger equation $\dot{U}_t = -\frac{i}{\hbar}F_tU_t$, $U_t : H \to H$ unitary evolution, $U_0 = \mathbb{1}$, $U_1 = U$. Quantum Hamiltonian F_t a-dislocates a state $\theta \in S$ if $\Phi(\theta, U\theta U^{-1}) \le a$, $a \in [0, 1)$.

Appears e.g. in quantum computation. Margolus-Levitin (1998) address the question about "the maximum number of distinct [i.e., non-overlapping] states that the system can pass through, per unit of time. For a classical computer, this would correspond to the maximum number of operations per second."

< ロ > < 同 > < 回 > < 回 > < □ > <

The total energy of the quantum evolution is given by $\hbar^{-1}\ell_q(F)$, $\ell_q(F) := \int_0^1 \|F_t\|_{op} dt$.

Quantum speed limit: universal bound on the energy required to *a*-dislocate a quantum state:

$$\Phi(a, U\theta U^{-1}) \le a \ \Rightarrow \ \ell_q(F) \ge \arccos(a)\hbar$$

Mandelstam-Tamm, 1945 "time-energy uncertainty", Uhlmann (1992) Margolus-Levitin, 1998, Anderson-Heidari, 2014

Quantum speed limit

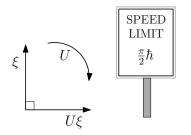


Figure: "Displacing" a pure quantum state

We explore semiclassical dislocation of semiclassical states.

Leonid Polterovich, Tel Aviv University Quantum speed limit vs. classical displacement energy

< ロ > < 同 > < 回 > < 回 >

Mathematical model of classical mechanics

 (M^{2n}, ω) -symplectic manifold (e.g. 2-sphere) ω - symplectic form. Locally $\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$. *M*-phase space of mechanical system.

Energy determines evolution: $f : M \times [0, 1] \rightarrow \mathbb{R}$ – Hamiltonian function (energy). Hamiltonian system:

$$\left(egin{array}{l} \dot{q} = rac{\partial f}{\partial p} \ \dot{p} = -rac{\partial f}{\partial q} \end{array}
ight.$$

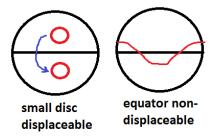
Family of Hamiltonian diffeomorphisms

$$\varphi_t: M \to M, \ (p(0), q(0)) \mapsto (p(t), q(t))$$

Ham-group of Hamiltonian diffeomorphisms Key feature: $\varphi_t^* \omega = \omega$.

 $X \subset M$ displaceable if $\exists \varphi \in Ham : \varphi X \cap X = \emptyset$ (Hofer, 1990)

Figure: (Non)-displaceability on the 2-sphere



・ 同 ト ・ ヨ ト ・ ヨ ト

Let f_t , $t \in [0, 1]$ be classical Hamiltonian generating Hamiltonian diffeomorphism φ . Total energy

 $\ell_c(f) = \int_0^1 ||f_t|| dt$, where $||g|| := \max |g|$ -uniform norm.

Dispacement energy of a displaceable subset $X \subset M$ $e(X) := \inf \ell_c(f)$ over all displacing Hamiltonians f.

Fundamental invariant in modern symplectic topology. Yields biinvariant metric geometry of *Ham*.

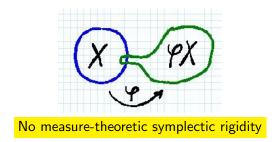
Rigidity: e(X) > 0 for all open X $e(B) \sim r^2$ for ball of radius r^2 . Hofer (1990), Viterbo, P., Lalonde-McDuff

イロト 不得 とうせい かほとう ほ

Counterpoint: If $Vol(X) < \frac{1}{2} \cdot Vol(M)$, for all $\epsilon > 0, \delta > 0$ there exists f_t such that

 $\operatorname{Vol}(\varphi X \cap X) < \epsilon, \ \ell_c(f) < \delta.$

Based on Katok's lemma, 1970, Ostrover-Wagner, 2005.



<ロ> (日) (日) (日) (日) (日)

Quantization

Think of Berezin-Toeplitz quantization.

 (M, ω) - closed Kähler manifold, quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$ (e.g., $M = S^2$ of area 2π).

 H_{\hbar} -sequence of complex Hilbert spaces, $\hbar \rightarrow 0$, dim $H_{\hbar} \rightarrow \infty$.

Toeplitz operators $T_{\hbar}: C^{\infty}(M) \rightarrow \mathcal{L}(H_{\hbar})$,

$$T_{\hbar}(f) = \int_{M} f(x) R_{\hbar}(x) P_{x,\hbar} d\operatorname{Vol}(x) \; ,$$

where $R_{\hbar} : M \to \mathbb{R}$ - (Rawnsley) function, $P_{\mathbf{x},\hbar} : H_{\hbar} \to H_{\hbar}$ - coherent state projectors.

For classical state τ (probability measure on M) define

$$Q_{\hbar}(au) = \int_{M} P_{x,\hbar} d au(x) \in \mathcal{S}(H_{\hbar})$$

"classical" quantum state, Giraud-Braun-Braun 2008

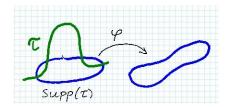
Displacement yields dislocation

 f_t -classical Hamiltonian, $t \in [0, 1]$, τ -classical state. $F_t = T_{\hbar}(f_t)$ - quantum Hamiltonian, $\theta = Q_{\hbar}(\tau)$ - quantum state.

Theorem (Charles-P., 2016)

If f_t displaces $supp(\tau) \Rightarrow F_t O(\hbar^{\infty})$ -dislocates θ .

Figure: φ -time-one-map of the flow of f_t



< ロ > < 同 > < 回 > < 回 >

Assume τ has smooth density, $f_{t,\hbar}$ depends on \hbar and bounded with 4 derivatives, dim M = 2n.

Theorem (Charles-P., 2016, sketch)

If $F_{t,\hbar}$ $o(\hbar^n)$ -dislocates $\theta \Rightarrow f_{t,\hbar}$ displaces $supp(\tau)$ and

 $\ell_q(F_{t,\hbar}) \geq e(supp(\tau))$.

Conclusion: Speed limit becomes more restrictive ~ 1 than the universal bound $\sim \hbar$.

Uses positivity of displacement energy e (symplectic rigidity) and sharp remainder estimates for Berezin-Toeplitz quantization (Charles-P., 2015).

Theorem (Charles-P., 2016)

Assume $Vol(supp(\tau)) < \frac{1}{2} \cdot Vol(M)$. Then $\forall \epsilon, \delta > 0$ there exists f_t such that $F_t \epsilon$ -dislocates θ and $\ell_q(F_t) < \delta$.

Conclusion: Competition between rigidity $(\ell_q > e)$ vs. flexibility $(\ell_q < \delta)$ is governed by the rate of dislocation.

RIGIDITYFLEXIBILITYRATE OF DISLOCATION $o(\hbar^n)$ ϵ

Leonid Polterovich, Tel Aviv University Quantum speed limit vs. classical displacement energy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

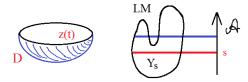
Zooming into small scales: Theorems 1,2 extend to dislocation of semiclassical states which "occupy" a ball of radius \hbar^{ε} , $\varepsilon \in [0, 1/2)$ in the phase space. The speed limit on such a scale is $\sim \hbar^{2\varepsilon}$ which, again, is more restrictive than the universal quantum speed limit $\sim \hbar$.

Other mechanisms of dislocation: Implication

dislocation \Rightarrow displacement is specific for "classical" quantum states $Q_{\hbar}(\tau)$. There are other mechanisms of semiclassical dislocation which do not involve displacement, i.e. for Lagrangian states.

Displacement energy via Floer theory

LM- space of contractible loops $z : S^1 \to M$ **Action functional:** $\mathcal{A}(z) : LM \to \mathbb{R}, \ z \mapsto \int_0^1 f(z(t))dt - \int_D \omega$ *D*-disc spanning $z, \ f : M \times S^1 \to \mathbb{R}$ – Hamiltonian



Gradient flow: nonlinear Cauchy-Riemann eq. (Gromov, Floer) **Critical points:** 1-periodic orbits of Hamilt. flow. Responsible for topological changes of sublevels $Y_s = \{A < s\} \subset LM$ as s varies. (Viterbo, Schwarz, Oh)

Critical values yield bounds for displacement energy

イロト イポト イラト イラト

 $\textbf{Quantum indeterminism} \leftrightarrow \textbf{symplectic quasi-states}$

(Entov-P.,2006), positive functionals linear on (Poisson) commutative subalgebras of C(M) but not on the whole space. Gleason's theorem (1957): dim $H \ge 3 \Rightarrow$ every quantum quasi-state linear, cf. discussion on hidden variables in quantum mechanics (also,Groenewold, 1946). Anti-Gleason phenomenon in classical mechanics: quasi-states

coming from Floer theory.

Rigidity of Poisson brackets \leftrightarrow **noise production** in phase-space registration of a quantum particle (P., 2014, Charles-P., 2016)

Symplectic capacities, monotone invariants based on periodic orbits ↔ **Gutzwiller type trace formula** (A. Uribe, 2016); in progress Charles, Le Floch, P., Uribe