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S u m m a r y  

Our problems  are abou t  
the  correspondence a +- -+  a between phys ica l  quan t i t i e s  a and  quan-  

t um opera to rs  a (quant iza t ion)  and 
the  poss ib i l i ty  of unde r s t and ing  the s ta t i s t i ca l  cha rac te r  of q u a n t u m  

mechanics by  averaging  over  un ique ly  de te rmined  processes as in classical 
s ta t i s t ica l  mechanics  ( in terpre ta t ion) .  

ct and  ~ are closely connected.  Their  meaning  depends  on the notion of 
observab i l i ty .  

We have t r ied  to pu t  these p rob lems  in a form which is fi t  for discus- 
sion. We could not  br ing  t hem to an issue. (We are incl ined to  res t r ic t  
the meaning  of ~ to the  t r iv ia l  correspondence  a --+ a (for lira h --* 0) and  
to deny  the poss ib i l i ty  suggested in [~). 

Meanwhile special a t t en t ion  has been pa id  to the  measur ing  process 
(coupling, en t ang lemen t ;  ignorat ion,  in f r ingement ;  selection,  measure-  
ment).  

Fo r  the  sake of s impl ic i ty  the discussion has been confined to elemen- 
t a ry  non-re la t iv is t ic  q u a n t u m  mechanics  of scalar  (spinless) sys tems with 
one l inear  degree of f reedom wi thou t  exchange.  E x a c t  ma thema t i ca l  
r igour has not  been aimed at.  

1. S t a t i s t i c s  a n d  c o r r e s p o n d e n c e .  

1.01 Meaning. W h e n  p o r i n g  o v e r  

t h e  c o r r e s p o n d e n c e  a <---+ a b e t w e e n  o b s e r v a b l e s  a a n d  t h e  

o p e r a t o r s  a ,  b y  w h i c h  t h e y  a r e  r e p r e s e n t e d  in e l e m e n t a r y  q u a n -  

t u m  m e c h a n i c s ,  

t h e  s t a t i s t i c a l  c h a r a c t e r  of  e l e m e n t a r y  q u a n t u m  m e c h a n i c s  

(we n e e d  ~ for  ~), we r u n  a c o n t i n u o u s  r i s k  of  l a p s i n g  i n t o  m e a n i n g -  

less p r o b l e m s .  One  s h o u l d  k e e p  in m i n d  t h e  m e a n i n g  of  t h e  c o n c e p -  

t i ons  a n d  s t a t e m e n t s  used .  W e  o n l y  c o n s i d e r  
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Mo : observational meaning, determined by  the relation with what 
is (in a certain connection) understood as observation, 

Mr:/ormal meaning, determined with respect to the mathematical  
formalism without regard to observation. 

Only Mo is of physical interest, M t is only of academic interest. 
Dealing with M t may sometimes suggest ideas, fruitful in the sense 
of Mo, but may often lead one astray. 

1.02 Quantization. Very simple systems suffice for demonstrating 
the essential features of c~ and ~. In elementary classical point me- 
chanics a system is described by  the coordinates q of the particles 
and the conjugate momenta p. We only write down a single set p,q, 
corresponding to one degree of freedom. Any other measurable 
quant i ty  (observable) a of the system is a function a(p,q) of p and q 
(and possibly of the time t). The equations of motion can be express- 
ed in terms of P o i s s o n brackets 

8a 8b Oa ~b (a,b) = ~p O--q---Oq ~p" (1.01) 

When the same system is treated in elementary quantum me- 
chanics, the (real) quantities a are replaced by  (H e r m i t i a n) 
operators a, which now represent the observables. In the equations 
of motion the P o i s s o n brackets (1.01) are replaced by  the ope- 
rator brackets 

i (ab--ba) (h=  h h P 1 a n c k's constant of action). (1.02) [a,b] =~ 

Problem ~I is to find the correspondence a -+ a (other problems 
are stated further on). 
1.03 Statistical character. The statements of quantum mechanics 

on observations are in general of statistical character. Problem ~ is 
whether the statistical quantum processes could be described by  a 
statistical average over uniquely determined processes (statistical 
description of the 1st kind, type S t) or not (statistical description of 
the 2nd kind, type $2). The observability of the uniquely determined 
processes may be required (proper statistical description, type So) or 
not (formal statistical description, type  St). (Classical statistical 
mechanics, e.g. are properly of the 1st kind, type  Sot). 

1.04 Transition operator. Before going on we have to deal for a 
moment with the operators and the wave functions. 
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The H e r m i t i a n operators a form a non-commutative.ring, The 
normalized elements (wave functions) of (generalized) H i 1 b e r t 
space on which they act from the left are denoted by ~%, the adjoint 
elements on which they act from the right are denoted by ~ .  Unless 
otherwise stated the inner product of ~ and ~0, is  simply written 
~ % .  The outer product of ~*~ and ~v defines the transi~on operator 

= = 

Take a complete system of orthonormal wave functions %. Th e 
orthonormality is expressed by 

the completeness by 
Z %,q~ =- 1. (1.05) 
/z 

In continuous regions of the parameter t~ the W e i e r s t r a s z 
8-symbol must be replaced by the D i r a c 8-function and the sum 
by an integral. (1.04) and (1.05) show that  every (normalizable) 
function qo can be expanded into 

~p = Z 1~, q~ with 1~, = q~ q~. (1.06) 

1%, and k*~ transform %,, and ~p~, according to 

kv~%,, ~- ~ 8 ~ ,  and ~* k* = ~ , ,  v~, 8~,,/?~ (1.07) 

(that is why they are called transition operators). (1..04) gives 

k~k~,~, = k ~ , ~ , .  (1.08) 

In  particular kin, and k~ are for ~ @ v orthogonal projection 
operators (belonging to ~ and ?, respectively). 

The trace of an operator a (resulting when a acts towards the 
right upon itself from the left, or opposite; when it bites its tail) 
is (according to (1.05)) defined by  

Tra = X $~ a ~%. (1.09) 

(Because the right hand member is invar iant  under unitary trans- 
formations of the %,, this definition is independent o f  the special 
choice of the complete orthonormal system Of $~). This gives 

Tr(kv~a ) ----- c?~ a ~%. (1.10) 

(1.04) and (1.05) can be written 

Trkv~ = ~v~, (1.11) 

2g kt~ ~ = 1  (1,12) 
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and further imply 
Tr(k~,vk~,#) = ~ , t ~ , ,  (1.13) 

Z k~Tr(kt~a ) ----- a (for every a). (1.14) 
/z,v 

(1.13) and (1.14) show that every operator a (with adjoint a t) can 
be expanded into 

a = Z ~ k ~  with ~v~ = Tr(kv~,a). (1.15) 

a~  is the matrix element (1.10) of a with respect to q% and ~%. 
It follows further that  if Tr(ac) = 0 for every a, then c = 0 and 
therefore (1.14) is equivalent to 

X. Tr(k~,b) Tr(kma ) = Tr(ab) (for every a and b). (1.16) 
/ZW 

Further 
Tr(ab) = Tr(ba). (1.17) 

When a is a H e r m i t i a n  operator 

a t = a,  a,y~, ---= %~ (1.18) 

(the asterik denotes the complex conjugate), the system of eigen- 
functions ~0~, with eigenvalues at, 

ao~ ---- a~,%, (1.19) 

can serve as reference system. In this representation (1.15) takes the 
diagonal form 

a = ~ at~km,. (1.20) 
/* 

1.05 Statistical operator x). The quantum state of a system is said 
to be pure, if it is represented by  a wave function %,. The statistical 
operator of the state is defined by  the projection operator kt, ~ of q~. 
We will see that  the part of the statistical operator is much similar 
to that  of a statistical distribution function. The most general quan- 
tum state of the system is a statistical mixture of (not necessarily 
orthogonal) pure states with projection operators kin, and non- 
negative weights k w which are normalized by  

z = 1.  (1 .21)  

(In some cases the sum diverges and the right member actually 
should symbollically be written as a 8-function). The statistical 
operator of the mixture is (in the same way as it would be done for 
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a distribution function) defined by 

k = Z (1.22)  

and because of (1.21) normalized by 

T r k  = 1. (1.23) 

(we will always write 1 for the right member, though in some cases 
it actually should be written as a g-function). For brevity we oKen 
speak of the state (or mixture) k. 

An arbitrary non-negative definite normalized H e r m i t i a n ope- 
rator k ( T r k  = 1) has non-negative eigenvalues k~, for which X k~---- 1 

b~ 
and corresponding eigenstates with projection operators ku~,. There- 
fore k can according to (1.20) be expanded in the form (1.22) and 
represents a mixture of its (orthogonal) eigenstates with weights 
given by the eigenvalues. 

The statistical operator k~,~, of a pure state is from the nature of 
the case idempotent (k~,~ ----- k~ ) .  If on the other hand an idempotent 
normalized H e r m i t i a n operator k is expanded with respect to 
its eigenstates k~, with eigenvalues k~, we get 

k 2 = k ,  /#~ : k ~ ;  Trk----- 1, E k ~ =  1, (1.24) 
F 

so that  one eigenvalue kv is 1, all other are 0. Then k is the projection 
operator of the pure state % 

k = kv~. (1.25) 

Therefore pure states and only these have idempotent statistical 
operators. 

Suppose the normalized statistical operator k of an arbitrary 
quantum state is expanded in some way into other normalized (but 
not necessarily orthog0nal ) statistical operators k, with non-nega- 
tive weights k, 

k----Ek,k,; k, ~>0. (1.26) 
r 

This gives 

k - -  k 2 = -E  k, (k, - -  k, 2) + ½ Z k ,k , ( k ,  - -  k,) 2. (1.27) 
~" rjS 

If we expand with respect to pure states k, (k, 2 ----- k,), (1.27) be- 
comes 

k - -  k 2 = ½ Z k ,ks (k ,  - -  k , )  (1 .28)  
' i S  
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This shows that  k - -  k 2 is a non-negative definite operator. If the 
given state is pure (k 2 = k) all terms at the right hand side of (1.27) 
(which are non-negative definite) must vanish separately. For the 
terms of the first sum this means that  all states 1~ with non-vanish- 
ing weight (k, > 0) must be pure, for the terms of the second sum it 
means further that  all these states must be identical with each other 
and therefore also with the given state (k, ----- k). The given state is 
then said to be indivisible. If the given state is a mixture, k -  k 2 
must be positive definite. Then at least one term at the right hand 
side of (1.28) must be different from zero. This means that  at least 
two different states k, and ks (k, :# ks) must have non-vanishing 
weight (k, > 0, ks > 0). The given state is then said to be divisible. 
Thus pure states and only these are indivisible. This has been proved 
in a more exact way by  v o n N e u m a n n l ) .  

1.06 Observation. In order to establish the observational meaning 
Mo, one must accept a definite notion of observation. We deal with 
3 different notions: 

Oc: the classical notion: all observables  a~,q) can be measured 
without fundamental restrictions and without disturbing the system, 

Oq: the quantum notion (elucidated in 2) : measurement of an ob- 
servable, which is represented by  an operator a, gives as the value 
of the observable one of the eigenvalues a~, of a and leaves the system 
in the corresponding eigenstate kin, (cf. (1.20)); if beforehand the 
system was in a state k, the probabil i ty of this particular measuring 
result is Tr (kk~) .  

Suppose for a moment that  the statistical description of quantum 
mechanics had been proven to be formally of the 1st kind S~, but 
with respect to Oq properly of the 2nd kind S2v Then (if any) the 
only notion, which could give a proper sense to the formal descrip- 
tion, would be 

Ou: the utopian notion: the uniquely determined processes are 
observable by  methods, hitherto unknown, consistent with and 
complementary to the methods of Oq. 

With respect to quantum theory classical theory is incorrect, 
though for many purposes it is quite a suitable approximation (for 
limh-+ 0). With regard to the utopian conception quantum theory 
would be correct, but  incomplete. In this a description is called 
correct if none of its statements is in contradiction with observa- 
tional data. It is called complete if another correct description, 
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which leads to observable statements not contained in the given 
description, is impossible. This need not  imply that  all possible 
observational statements can be derived from a complete theory. 

1.07 The/undamental controversy. Problem ~ intends to state cer- 
tain aspects of the well known controversy about the statistical 
character of quantum mechanics in a form fit for a reasonable dis- 
cussion. Such a discussion is only possible as long as the theory is 
accepted as essentially correct (or rejected and replaced by a more 
correct theory). The completeness of the theory may be. questioned. 

The physical reasonings of B o h r a.o. and the mathematical 
proof of y o n  N e u m a n . n l )  (reproduced in 1.08) have shown 
that  (with respect to 0q) the statistical description of quantum me- 
chanics is properly of the 2nd kind S~ (problem ~t). Yet many of the 
opponents did not throw up the sponge, some because they did not 
grasp the point, others because they perceived a gap in the reasoning. 
It seems that  a great many of the  escapes (as far as they consider 
quantum mechanics as essentially correct) debouch (if anywhere) 
into an expectation, which either is already contented with a formal 
statistical description of the l ste kind S~, or moreover hopes to give 
such a description a proper sense of type S~ by proclaiming the 
utopian notion of observation 0,. The examination of this concep- 
tion is problem ~2. 

Even if one did (we could not satisfactorily) succeed in proving 
the formal impossibility of type SJ (and consequently of type S~), 
many of the opponents would not yet strike the flag. We have al- 
ready gone to meet them in trying to formulize some of their most 
important objections in a form fit for fruitful discussion. It would be 
like flogging a dead horse in trying to do so with all vague objections 
they might possibly raise. Actually that  is their own task. If they 
succeed in doing so, we t ry  to prove the imposs!bility, they t ry to 
find the realization of their (formal or proper) expectations. Formal 
expectations can be realized by a formal construction, proper ones 
also require the realization of the type of observations from which 
they draw their observational meaning. As soon as the opponents 
succeed in finding a realization, we will (formally or properly) be 
converted (but not a minute before). As often as we succeed in prov- 
ing the impossibility, some of the opponents may formulize (if 
anything) new objections for ever. At best they  might be compelled 
to retreat step by step, they could never be finally vanquished. It  
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may also happen that nobody succeeds in going further. Thus 
because of running on an infinite track or into a dead one, the con- 
troversy may be left undecided. Meanwhile we expect that  in an 
infinite regression the opponents obiections will lose more and more 
interest after every retreat. 

1.08 v o n N e u m a n n's proo/. The only states with a meaning 
Moq with respect to quantum observations Oq are quantum states 
(pure states or mixtures). Therefore in a statistical description of the 
1st kind SSq a quantum state should be described as a statistical en- 
semble of quantum states. This is impossible for a pure state, because 
such a state is indivisible (cf. 1.05). Then the statistical description 
of quantum mechanics must (with respect to quantum observations) 
be of the 2nd kind S~2q. This is in our present mode of expression the 
point of v o n N e u m a n n's proof 1). It should be noted that in 
1.05 the admission of non-negative probabilities only (non-negative 
weights and non-negative definite statistical operators) is an essen- 
tial (and natural) feature of the proof. 

Now before going into the details of problem ~2, we first turn to 
problem a (we need a5 for ~2)" 

1.09 Correspondence a(p,q) < > a. In passing from classical to 
quantum mechanics, the coordinate and momentum q and ~b, for 
which 

(p,q) = 1, (1.29) 

are replaced by  coordinate and momentum operators q and p, for 
which 

[p,q] ~ 1 (i.e. p q - -  qp = ~ ) .  (1.30) 

p and q are the generating elements of the commutat ive ring of clas- 
sical quantities a(q,p), p and q the generating elements of the 
non-commutative ring of quantum operators a. The non-commuta- 
bility (1.30) of p and q entails that  the quantities a(p,q) cannot 
unambiguously be replaced by  a(p,q). The ambiguity is of the order 
of h. The classical quantities a(p,q) can be regarded as approxima- 
tions to the quantum operators a for lira h--,'- O. The former can 
serve as guides to get on the track of the latter. Problem al asks for 
a rule of correspondence a(p,q) ~ a, by  which the quantum operators 
a can be uniquely determined from the classical quantities a(p,q). 

In practical problems no fundamental difficulties seem to occur 
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in finding the appropriate form of the required operators a. This 
suggests the problem (not further discussed here) whether all or only 
a certain simple class of operators a occur in quantum mechanics. 

Suppose for a moment that  all relevant quantum operators a had 
been fixed in one or other way. Then one might ask for a rule 
a --> a(p,q), by which the corresponding classical quantities a(p, q) 
are uniquely determined (problem ~2)- Problem ~2 would be easily 
solved in zero order of ~, ambiguities might arise in higher order. 
Now (with respect to 0q) the classical quantities have only a meaning 
as approximations to the quantum operators for lira h ~ O. There- 
fore, whereas in zero order of ~ it is hardly a problem, in higher order 
problem ~2 has no observational meaning Mo¢ (with respect to 0q). 

Problems ~1 and ~2 could be combined into problem a3, asking for 
a rule of one-to-one correspondence a(p,q) < > a between the clas- 
sical quantities a(p,q) and the quantum operators a. Beyond the 
trivial zero order stage in ~, problem ~3 can (with respect to 0q) only 
have an observational meaning M~ as a guiding principle for de- 
tecting the appropriate form of the quantum operators (i.e. as pro- 
blem ~,). A formal solution of problem ~3 has been proposed by  
W e y 1 3) (cf. 4.03). We incidentally come back to problem ~3 in 1.18. 

1.10 Quantum observables. In this section a will not denote a clas- 
sical quant i ty  a(p,q), but it will stand as a symbol for the observable, 
which (with regard to Oq) is represented by  the quantum operator a. 
According to Oq two or more observables a, b . . . . .  can be simultane- 
ously measured or not, according as the corresponding operators 
a, b , . . . ,  respectively do or do not commute i.e. as they have all 
eigenstates in common or not. Problem a4 deals with the (one-to-one) 
correspondence a ~ > a between the symbols a and the operators a. 
Problem ~4 has no sense as long as the symbols a are undefined. They 
may, however, be implicitely defined just by  putt ing a rule of cor- 
respondence. (When the symbols a are identified ~vith the classical 
quantities a(p,q), problem a4 becomes identical with problem a3). 
V o n N e u m a n n 1) has proposed the rules 

i f a ~ a ,  then/(a)  < ~/(a) ,  I 

if a +--~ a and b < ~ b, then a + b < > a + b. II 

/(a) is defined as the operator, which has the same eigenstates as a 
with eigenvalues/(a~,), where a~, are those of a. Then I seems to be 
obvious. The observable/(a)  can be measured simultaneously with 
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a, its value :is/(a~,), where a~ is t h a t  of a. When • a and b commute, 
a + b has the same eigenstates as a and b with eigenvatues a~ + b w 
where a~, and b~ are those of a and b. Then II  seems a l so to  be ob- 
vious, a + b can be measured simultaneously with a and b, its value 
is a~, + b w where a~ and b~ are the values of a and b. When a and b 
do not commute, I I  is proposed with some hesitation. Because ac- 
cording.to 0q the probability of finding a value a~, for a in a state k is 
Tr(kk~)  (and because of 1.20)), the expectation value (average 
value) of a in this state i s  

• Ex(a) E Tr(kk~,~)a~,= Tr(ka) (1.31) 
, , , ~ t g  

and similar for b. If one requires that  for a certain pair of observables 
a and b always 

Ex(a + b) = Ex(a) + Ex(b), (1.32) 
one must, because of 

Tr(k(a + b ) )  ----- Tr(ka) + Tr(kb), (1.33) 
have that  

Ex(a + b) ----Tr(k(a + b)). (1.34) 

Because this has to hold for all states k, a and b have to satisfy rule 
II, When II  is given up for certain pairs a,b, the additivity of the 
expectation values of these pairs has also to be given up. 

In 4.01 it will be shown thaL if I and II  shall be generally valid, 
the symbols a have to he isomorphic with the operators a. But then 
there is no reason to introduce the former, their task (if any) can 
be left to the latter. Accordingly for the sake of brevi ty  we shall 
henceforth speak of.the (quantum) observable a. 

When on the other hand,  the symbols a are intended as real com- 
muting quantities, the general validity of I and n cannot be main- 
tained, As long as ,the symbols a are not further defined, problem 
0~ comes to searching for a one-to-one correspondence a . <  ~ a 
between the commutative ring of real symbols a and .the non-com~ 
mutative ring of H e r m i t i a n operators a. There may be no, one or 
more solutions. After the pleas for I and for I!, one might be in- 
clined to maintain 1 and to restrict II. In 1.13 we meet with a par- 
ticular case (problem ~s) for which II  has to be maintained and there- 
fore I has to be restricted. Because we are further exclusively in- 
terested in problem ~ ,  we will not examine the possibility of solu- 
tions for which n is restricted. 
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1.11 Hidden parameters. We try  to trace the conditions for the 
assumption that  the statistical description of quantum mechanics is 
(at least formally) of.the 1st kind S i (problem ~). A statistical des- 
cription S 1 must be obtained by statistical averaging over uniquely 
determined processes. The averaging must be described by inte- 
gration or summation over a statistical distribution with respect to 
certain parameters. Unless they are further specified, we denote all 
parameters by a single symbol ~ and integration (including a pos- 
sible density function) and summation over continuous and discrete 
parameters b y f  d~. Parameters, which are in no way observable with 
respect to 0 v are called hidden parameters. (We exclude their oc- 
curence in 1.15). As a pure superstate we define a state for which all 
parameters (inclusive the hidden ones) have a definite value. 

1.12 Distributions. A quantum state must be described as an en- 
semble of pure superstates. The statistical operator k of the quan- 
tum state must correspond to at least one (non-negative definite) 
distribution function k(~) for the superstates. For each definite 
value of ~ all k(~) must have definite values and therefore must 
commute, k(~) must be normalized by f d~ k(~) = 1, so that with (1.23) 

Trk = f d~ k(~). (1.35) 

Further  the correspondence must be linear 

if kl + - ~  kl(~) and k2 ~ ~ k2(~), then kt + k2< ~ kt(~)+k2(~). (1.36) 

The observable (with respect to Oq) represented by the statistical 
operator kin, of a pure quantum state has the eigenvalue 1 in this 
quantum state and 0 in all orthogonal states. The probability of 
measuring in a system, which is originally in a quantum state k, 
the value 1 (and leaving the system in the pure quantum state k~,~,) 
is Tr(kkm, ). In a description of type S t this probability must be in- 
terpreted as the probability that  any superstate belonging to the 
ensemble with distribution function k(~) corresponding to k also 
belongs to the ensemble with distribution function km,(~ ) corres- 
ponding to kin,. The latter probability is fd~ k(~)km,(~ ). Therefore 
the correspondence k +--+ k(~) must be so that  always 

Tr(ktk2) ~ f d~ kt(~)k2(~). (1.37) 

For two orthogonal states kt and k~ this expression is zero, which 
guarantees that  the distribution functions kl(~) and k2(~) do not 
overlap, provided they are non-negative definite. 
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1.13 Superquantities. The expectat ion value of the observable a 
in the quan tum state  k is because of (1.31) and (1.37) 

Tr(kkt,~,)a~, = ~ f d~ k(~)k~,~,(~)a~,. (1.38) 
/z p 

The right hand  member  of (1.38) can be interpreted as the average 
value of a quan t i ty  a(~) ----- X a~,kt,~,(~ ) (defined as the superquan t i ty  

P 
corresponding to the observable a) in the ensemble of superstates 
with distr ibution function k(~). This is exact ly  the way in which the 
expectat ion value should appear in a description of type  S 1. Thus 
with the correspondence a + - ~  a(~) (which is a linear generalization 
of k < > k(~)) the expectat ion value of a in the s tate  k can be writ- 
ten 

Tr(ka) = f d~ k(~) a(~). (1.39) 

Comparison with (1.35~ shows tha t  the unit  operator  1 has to cor- 
respond to the uni t  quan t i t y  1 

1 + - ~  1. I I I  

By  a fur ther  linear generalization of (1.39) we see tha t  the cor- 
respondence a ( > a(~) must  obey the rule 

if a +--+ a(~) and b ~ > b(~), then Tr(ab) -~ fd~ a(~) b(~). IV 

Rule I I  is a consequence of rule IV (the necessity of I I  is evident  
from the beginning, because average of sum ~ sum of averages). 
Therefore rule I cannot  be satisfied wi thout  restrictions. 

Problem c~ 5 is how to establish the correspondence a < ~ a(~). 
~-5 is, like a3, a special case of ~4. 

1.14 Equations o/motion. The equat ions of motion for the quan- 
t u m  states must  be obtained from the equations of motion for the 
superstates. The former are determined by  the H a m i 1 t o n i a n 
operator H (which m a y  depend on t ime t) of the system according 
to the equation of motion of the stat ist ical  operator  k 

(which is equivalent  to the S c h r/5 d i n g e r equation 

i ~t 

dk  
d~- - -  [ H , k ]  (1 .40)  
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for pure quantum states). Because the correspondence k ~ k(4) 
is linear, we have 

dk dk(~) 
d--/- ~ > d--T- (1.41) 

(1.40) can be integrated into 
t t 

e~fa* al* I (1.42) e - - ' r * ' H ~ ,  " , ~ J  ' , , k(t) ,o k(t0) ,o 
t 

i 

- ~ f ~ '  HCa*'I cp(t0) for pure quantum (which is equivalent to q~(t) = e t. 
states). If the superquantity corresponding to the bracket expres- 
sion [a,b] is written ((a(4), b(4))) (the former and consequently also 
the latter bracket expression is antisymmetrical), the equation of 
motion of the distribution function k(4) reads 

dk(4) = _ ( ( H (4), k(~))). (1.43) 
dt 

Because 

d ( k ~ a ~  a t  T r ( k a ) =  T r \ - - E H , k ]  + 

and correspondingly 

the dynamical time dependence can be shifted from the wave func- 
tions ~ and the statistical operators k (S c h r 6 d i n g e r repre- 
sentation) and the distribution functions k(4) to the operators a 
(H e i s e n b e r g representation) and the superquantities a(4). 

Instead of (1.40), (1.43) we then get 

da 0a 
d-T -= -~- + [H, a], (1.46) 

d a ( ~ )  _ Oa(4) + ((HC~}, a(4})). (1.47) 
dt ~t 

For those parameters 4, which correspond to observable quantities 
(with respect to Oq) (1.47) must be valid and reads 

d4 a~ 
dt = 0-7 + ((n(4), 4)). (1.48) 

P h y s i c a  X I I  27 
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The equations of motion for the hidden parameters may  be of a dif- 
ferent form. When all parameters (inclusive the hidden ones) are 
continuous, their equations of motion have to satisfy the condition 
that  when inserted in 

_ _  _ _  ~a(~)  d ~  da(~) = ba(~) + _ _  (1.49) 
dt ~t b~ dt 

(where the last term stands symbolically for a sum over all separate 
parameters ~), they must give (1.47). 

We may summarize that,  in order to give a statistical description 
of the 1st kind, one would have to determine (only formally for 
type S~, also experimentally for type So 1) the parameters ~ (inclusive 
the hidden ones) and the density function, the (one-to-one or one-to- 
many) correspondence a < + a(~) (problem ~5) and the equations 
of motion for the hidden parameters (if there are any such), all 
with regard to the imposed conditions. 

1.15 Correspondence a +--+ a(~). Because a n o n - H e r m i t i a n  
operator a (with adjoint a*) can be written as a complex linear com- 
bination of H e r m i t i a n operators 

1 ( i a - - i a * ) ,  
a = ½(a + a*) + 7 

the generalization of the correspondence a < ~ a(~) to non-I-[ e r- 
m i t i a n operators is uniquely determined. Now take the non-H e r- 
m i t i a n transition operators k~v, which according to (1.13), (1.14) 
form a complete orthonormal system in the ring of operators a. 
For the corresponding functions k~v(~) we get corresponding to 
(1.11), (1.12); (1.13), (1.14) and (1.15) (and using III ,  IV and (1.03)) 
the relations 

f d~ kzv(~ ) = ~t,v, (1.50) 

E kt,tz(~ ) = 1 ; (1.51) 
tt  

f d~ k~,(~) kt~,¢(~ ) = 8t~,, ~,,  , (1.52) 

Z km(~ ) km(~ ) = ~(~ - -  ~') (1.53) 
/z.v 

(~(~ - -  ¢') stands for a product of ~-symbols for all parameters ~ and 
the inverse of the density function) and 

a(¢) = E %, km(~) with ~v~ = f d ¢  k~(¢) a(¢). (1.54) 
I,L,V 
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(the ~v~ are the same as in (1.15)). These relations show, tha t  the 
functions a(~) can be  regarded as elements of a (generalized) 
H i 1 b e r t space, in which the km(~ ) form a complete  or thonormal  
sys tem;  (1.52) expresses the or thonormal i ty ,  (1.53) the completeness.  

We now show tha t  the  correspondence a ~ > a(~) has to be a 
one-to-one correspondence.  Suppose for a moment  there are opera- 
tors k~v to which there correspond more than one functions km(~), 
which we distinguish b y  an index p, k ~  < > kin; p(~). Then the ex- 
pression 

]g fd~ k~;p(~) k~,v,;V(~ ) k~,,¢; p,,(~') 
H/W" 

evalua ted  with (1.52) gives kj,v;K'(~'), evalua ted  with (1.53) it gives 
k~,;p(~'). Therefore k~,~; p,,(~') and k~,,; p(~') have to be  identical. To 
each operator  a and only to this one there has to correspond one and 
only one superquan t i ty  a(~). As a consequence the superquant i t ies  
a(~) must  depend on the same number  of parameters  (at least if 
they  are not too bizarre) as the operators  a, i.e. on twice as m a n y  as 
the wave  functions ~0. 

Thus  to each (normalizable) real function a(~) and only to this one 
there corresponds one and only one H e r m i t i a n operator  a, which 
represents an observable  quan t i ty  (with respect  to Oq). In other  
words every  real function a(~) is a superquant i ty .  Because this also 
holds for the (real and imaginary  parts  of the) parameters  ~ them- 
selves, none of them can be hidden in the sense defined above.  (An 
observable  quan t i ty  may  occasionally be inobservable  in a measur-  
ing device adepted  to an incommensurable  quan t i ty ;  in this sense a 
parameter  may  occasionally be hidden). In part icular  all parameters  
must  obey  (1.48). 

Comparing (1.15) and (1..54) we see tha t  the correspondence 
a < .~ a(~) can be expressed b y  

a(~) = Tr(m(~)a) ,  a ~ fd~m(~)a(.~), (1.55) 
with 

m(~) = 2; kv, kT,~(~); mt(~) ----- m(~). (1.56) 
Iz,v 

The H e r m i t i a n t ransformat ion nucleus m(~) satisfies the rela- 
tions 

Trrn(~) ----- 1, (1.57) 

fd~ m(~) = 1; (1.58) 

Tr(m(~) m(~')) = ~ ( ~  - -  ~'), (1.59) 

f d~ Tr(m(~) a) Tr(m(~) b) = Tr(ab) (for every a and b) (1.60) 
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(1.60) is equivalent to 

fd~ m(~) Tr(m(~) a) = a (for every a). 

(1.59) expresses that  m(~) is or thonormal  with respect to the ring of 
operators a, complete with respect to the ring of superquantit ies 
a(~); (1.60) expresses the crossed properties. 

If, on the other hand, a H e r m i t i a n t ransformation nucleus 
m(~) satisfies the conditions (1.57), (1.58) ; (1.59), (1.60), the corres- 
pondence (1.55) satisfies I I I  and IV. We may  either choose a com- 
plete or thonormal  system of kt, v, satisfying (1.11), (1.12); (1.13), 
( I. 14) and determine the corresponding system of k~,v(~), which then 
satisfy (1.50), (1.51); (1.52), (1.53), or we choose the latter system 
and determine the former one. In both  cases m(~) can be expanded 
according to (1.56). 

1.16 Uniqueness. Now let us see whether  the correspondence 
a < > a(~) is uniquely determined by the conditions I I I  and IV. 
Suppose we have two different nuclei m'(~) and rn"(~), depending 
on the same parameter  ~ and both satisfying (1.57), (1.58); (1.59), 
(1.60). When we choose for both  the same complete or thonormal  
system of k~v(~) satisfying (1.50), (1.51); (1.52), (1.53), we find two 
corresponding systems of k ~  and k~,v, which each .satisfy (1.11), 
(1.12);(1.13), (1.14). Therefore the latter systems can be connected 
by a uni tary transformation 

k~, v = u k ~ v  u t, u u  t = 1 ; k ; ~  : u t k ~  u (1 .61)  
l (expressed analoguous to (1.03) u can be writ ten as E ~?~ q0~t). The 

same uni tary  transformation connects the nuclei m'(~) and m"(~) 
and also the statistical operators k '  and k"  corresponding to the 
same distribution function k(~) and the operators a '  and a"  cor- 
responding to the same superquant i ty  a(~). Then the single and 
double dashed representations are isomorphous and in quan tum 
mechanics regarded as equivalent. Therefore, when the parameters 

have been chosen, the correspondence a < > a(~) (if there is any 
correspondence) can be considered as unique. 

When we choose one set of parameters ~ and another  set of para- 
meters ~, the nuclei m(~) and m(~) (if there are any nuclei) can be 
considered as uniquely determined. When we take a complete ortho- 
normal system of k~,~ satisfying (1.11), (1.12); (1.13), (1.14), we find 
two corresponding.systems of k~,v(~) and k~,v(aq), which each satisfy 
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(I .50), (1.51); (1.52), (1.53). Then it follows that  the superquantities 
a'(~) and a"(~), corresponding to the same operator a are connected 
by 

a'(~) = fdB  v(~; ~)a"(~); a"(B) = f a t  v(~;~)a'(~), (1.62) 

where the t ransformat ion nucleus 

v(~; ~) = X k ~ v ( ~ ) . ,  . . ' k~(~) ,  v(~, ~) = v*(~; ~) (1.62) 
satisfies 

f d~ v(~; ~) = f d~ v(~; ~) = 1 ; (1.64) 

fd~ v(~; ~) v(~'; ~) = ~(~--~'), fd~ v(~; ~)v(~; ~') = B(~--~'). (1.65) 

The rings of a'(~) and of a"(~) are not necessarily isomorphous. 
When they are, we must  have 

f f  d'~'d-q"v(~; ~')v(~; "~")a"(~')b"(B") = f d~ v(~; B)a"(~q)b"(-q) (1.66) 

for every a"(~) and b"(~), which requires 

v(~; ~') v(~; B") = v(~; B') 8 (B ' - -~" )  (1.67) 
and similarly 

v(~'; ~) v(~"; ~) = v(~'; ~) ~(~' - -  ~"). (1.68) 

The solutions of (1.67) and (1.68) have the form 

v(~; B') = 8(~(~) - -  v]') (1.69) 
and 

v(~'; ~) = ~(~' - -  ~ (~)), (1.70) 

where B(~) and ~(~) are single valued functions. Because (1.69) and 
(1.70) have to be identical, B(~) and ~(aq) have to be inverse to each 
other with unit  functional determinant  

~(~) 0(4) 
0(4) = b - ~  = 1 (1.71) 

(it should be remembered that  we symbolically write ~ or ~ for what  
might  be a whole set of parameters ~ or ~). With- (1.69), (1.70) we 
get for (1.62) 

a'(~) = a"(~(~)); a"(~) = a'(~(~)). (1.72) 

This shows that  the transformation between two isomorphous re- 
presentations a'(~) and a"(~) can be regarded as merely a transform- 
ation of the parameters.  I t  further follows that ,  if the dynamical 
conditions for (1.49) are fulfilled by one of these representations, 
they are also fulfilled by the other one. Therefore isomorphous re- 
presentations can be regarded as equivalent. 
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When the solution v(~ ;8) of (1.64), (1.65) is not of the form (1.69), 
(1.70), the representations a'(~) and a"(~) are non-isomorphous. 

1.17 Parameters. In 4.03 we derive a correspondence, satisfying 
n I  and IV, in which the two independent parameters (denoted by  
p and q), which run continuously between m co and + co, corres- 
pond to the operators p and q. This choice of parameters might seem 
the most satisfactory one, as it is adapted to the fundamental part 
played by  the momentum and the coordinate. (By the way, because 
momentum and coordinate cannot simultaneously be measured, p 
may be regarded as occasionally hidden in a coordinate measure- 
ment, q similarly in a momentum measurement - -  or in a somewhat 
different conception p may be regarded as occasionally hidden in 
q-representation, q in p-representation ; both p and q may be regard- 
ed as occasionally partially hidden in other measurements or re- 
presentations). 

In 1.16 we have seen that  for each choice of a complete orthonor- 
mal system of kw(p,q),  satisfying (1.50), (1.51); (1.52), (1.53), there 
must for every other representation with parameters ~ be a similar 
system of k~,,(~) with the same set of indices Vt,v. That makes us ex- 
pect that  when ~ stands for a set of not too bizarre continuous para- 
meters, the latter can like p and q be represented by  two independent 
real parameters r and s. We do not examine the validity of this ex- 
pectation (which would be very difficult). 

1.18 Bracket expressions. When these parameters r and s are also 
independent of time, the consistency relation for (1.47), (1.48) and 
(1.49) reads 

((H(r,s) a(r,s))) - -  Oa(r,s) ((H(r,s) r)) + Oa(r,s) ((H(r,s), s)) (1.73) 
' O r  ' 

(for every a(r,s)). 
When the superquantities H(r,s) corresponding to the H a m i 1- 

t o n i a n  operators H are not restricted to functions of a too 
special type, (1.73) requires (using the ant isymmetry  properties 

((r,s)) = - -  ((s,r)); ((r,r)) = ((s,s)) = O) 

( (a(r,s) , b(r,s) ) ) = ( (r,s) ) (a(r,s) , b(r,s) ) (for every  a(r,s) and b(r,s) ), (1.74) 

with the P o i s s o n brackets (similar to (1.01)) 

(a(r,s), [~(r,s) ) = Oa(r,s) Ob(r,s) Oa(r~s) Ob(r,s) (I .75) 
Or as Os Or 



ON THE PRINCIPLES OF ELEMENTARY QUANTUM MECHANICS 42,3 

For the superquantities p(r;s) and q(r,s) corresponding to p and q 
we get because of (1.30) 

((p(r,s), q(r,s))) ---- ((r,s)) (p(r,s), q(r,s)) = I. (1.76) 

Therefore (1.74) can also be written 

(a(r,s) , b(r,s) ) 
( (a(r,s), b(r,s))) = (p(r,s) , q(r,s) ) " !1.77) 

This means that  the correspondence a ~ > a(r,s) has to satisfy the 
rule 

if a ~ > a ( r , s ) , b ~  ~ b(r,s) and p < > p(r , s ) ,q<  >q(r,s), 

then [a,b] ~ (a(r,s), b(r,s)) 
(p(r,s) , q(r,s) ) " V 

The analoguous derivation for the parameters p and q gives 
(independent of our unproved expectation about the parameters 
r and s) the condition 

if a +--+ a(p,q) and b ~ .~ b(p,q), then [a,b] < > (a(p,q), b(p,q)). V, 

For this choice of parameters problem as of the correspondence 
between the superquantities a(p,q) and the quantum operators a 
seems very similar to problem ~3 of the correspondence between the 
classical quantities a(p,q) and the quantum operators a, by  which 
they are replaced in the procedure of quantization. The fact that  in 
this procedure the P o i s s o n brackets in the equations of motion are 
replaced by  operator brackets might suggest rule V' in problem ~3. 
If a solution of a3 satisfying rules III, IV and V' could be found, the 
classical description could be regarded as the description of the uni- 
quely determined processes in a statistical description of the 1st 
kind S 1. The utopian notion 0u, intended to proclai.m these processes 
as observable, would coincide with the classical notion Oc. This would 
not (as it might seem) exactly mean a return towards the old classi- 
cal theory, which was regarded as incorrect (with respect to 0q and 
therefore also with respect to 0u, which regards 0q as correct, 
though incomplete), because one would have to deal with peculiar 
distributions of classical systems. These distributions would have to 
be responsible for quantization. 

But such a solution cannot be found. In 4.02 we show that V' is 
self contradictory (except for l im h -+ 0). Because V' already fails 
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for operators of occuring types, a restriction of the admitted opera- 
tors could not help. Therefore a solution of problem as with p and q 
as parameters, which satisfies the dynamical conditions, is impos- 
sible, just as a solution of ~3, which describes the quantization of the 
classical equations of motion by  the same rule as the quantization of 
the classical observables. 

This is in point of fact all we have been able to prove. Though p 
and q maY seem the most satisfactory choice of parameters in a 
description of type S 1, the formal disproof of just this description 
does not involve the impossibility of any description of type  SJ. A 
complete proof of the impossibility of a description of type S~ does not 
seem simple and neither does the construction of such a description. 

For a pair of continuous time independent parameters r and s 
condition V would have to be satisfied. When the commutator  of 
r and s commutes with r and s, V is self contradictory just like V'. 
It  is doubtful whether V can be consistent in other cases. A pair of 
continuous time dependent parameters r(t) and s(t) must at every 
time t be unique single-valued functions of the initial values r(to) and 
s(to) at an arbitrary time to. Then instead of the time dependent r(t) 
and s(t) the time independent r(to) and s(to) can serve as parameters. 
Therefore, if our expectation about continuous parameters is justi- 
fied, the difficulty for such parameters lies mainly in the consistency 
of V. It is difficult to see how parameters with entirely or partially 
discrete values or of too bizarre continuous type could give a satis- 
factory description of type S 1. 

There are still more difficulties for a description S I as we will see 
in a moment. 

1.19 Quasi-statistical description. Whereas it is doubtful whether 
the dynamical condition V can be fulfilled, conditions I I I  and IV can 
be satisfied without much difficulties. With a solution of the latter 
conditions only, one can construct a quasi-statistical description of 
the 1st kind Q~, which looks very similar to a formal statistical 
description of the 1st kind S~, but  in general does not satisfy the 
dynamical (and, as we will see in a moment, other necessary) con- 
ditions. A solution of I I I  and IV gives according to (1.39) the correct 
average values. But the real distribution function k(~) corresponding 
to a H e r m i t i a n non-negative definite statistical operator k of a 
quantum state (pure state or mixture) is in general not non-negative 
definite. 



ON THE PRINCIPLES OF ELEMENTARY QUANTUM MECHANICS 42t~ 

The difficulty of interpreting negative probabilities might perhaps 
be surmountable, at least in formal sense M 1. Meanwhile, according 
to the remark following (1.37), it is no longer guaranteed, that  the 
distribution functions ki(~) and k2(~) corresponding to orthogonal 
quantum states k t and k2 do not overlap. And overlapping of such 
distribution functions it not allowed by the notion of quantum ob- 
servability 0 v We see this in the following way. Suppose we subject 
the system repeatedly to a measurement, which distinguishes be- 
tween the states k t and k2 (and other orthogonal states). When after 
one measurement the system is left in the state kl, the probability 
of finding it after a repeated measurement in the state k2 is 0 
because of (1.37). In the quantum mechanical interpretation this 
means absolute certainty of not finding the state k2. In the quasi- 
statistical interpretation the zero value for the right hand member 
of (1.37) results from integration of positive and negative probabili- 
ties over the region of overlapping. Integration over a statistical 
distribution refers to a great number of measurements. In a proper 
statistical description of the 1 st kind S l the absolute certainty of not 
finding the state k2, even in a single measurement, can only be esta- 
blished if no superstate occurring in the ensemble kl(~) can also occur 
in the ensemble k2(~), i.e. if k1(4) and k2(~) do not overlap. 

Therefore in order to find a statistical description of type S}, one 
would have to satisfy not only conditions II,  IV and V (or another 
dynamical condition), but also the condition that  the distribution 
functions of quantum states are non-negative definite, or at least 
that the distribution functions of orthogonal states do not overlap. 
This task does not look very promizing. 

We incidentally remark that  in any representation of type QI 
either of the two parameters can be treated as occasionally hidden. 
Already after integration over this one parameter we get the quan- 
tum mechanical formalism in the representation of the other para- 
meter. In particular no negative probabilities are left. 

In 4.03 we derive a particular solution (W e y l's correspondence) 
of I II  and IV with parameters p and q and in 5 we discuss the quasi- 
statistical description QI to which it leads. We do so not only for the 
sake of curiosity, but also because it is very instructive to those 
opponents in the fundamental  controversy, who have a description 
of type S l (similar to that  of classical statistical mechanics) vaguely 
in mind. A description of type Q1 might be the utmost (though 
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rather poor) realization of such foggy ideas. (The mysterious hidden 
parameters then turn out as ordinary, occasionally inobservable- 
observables). Such a description clearly shows the obstacles (equa, 
tions of motion; non-negative probabilities or non-overlapping 
distributions) at which all such conceptions may be expected to 
break down. 

So far the general line of reasoning. Before dealing further with 
correspondence in 4, for which we need the operator relations of 3, 
we review in 2 the measuring process in terms of the operator re- 
presentation. 

2. The  m e a s u r i n g  p r o c e s s .  

2.01 Deviation. Quite apart  from the interpretation of 1.10, the 
expectation value of a quantum observable a in a quantum state k 
is given by  (1.31) or 

Ex(k; a) = Tr(ka). (2.01) 

Further  the deviation of this observable in this state is defined by 

Dev(k; a) = Ex(k;  (a - -  1Ex(k; a)) 2) = Tr(k(a - -  1Tr(ka)) 2) ----- 

---- Tr(ka 2) - -  (Tr(ka)) 2. (2.02) 

First we review some consequences of this definition, detached of 
any interpretation. 

It  can be seen from the inner members of (2.02) that  the deviation 
is non-negative. We form the transition operators kv~ , (1.03) of the 
complete system of eigenfunctions ~0~ of a with eigenvalues a~, 
and expand k according to (1.15) as 

k = ~ x~, k m with xv~ = Tr(kv~ , k). (2.03) 
/zpv 

The normalization of k (Trk  = 1) gives with (1.11) 

X; x ~  = 1. (2.04) 
IL 

Then (2.02) gives 

2 _ _  (X ×~ %)2 = ½ X × ~ x ~  (a~  - -  av) 2. ( 2 . 0 5 )  Dev(k ; a) = ~ ×m* at, 
/~ /~ /~,v 

If k is a pure state with wave function % we have 

×m, = Tr(km, k) = I (2.06) 

× ~  is then non-negative and (2.05) can only be zero, if ~0 is a linear 
combination of eigenfunctions %, all with the same eigenvalue a t,  
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If the normalized quantum state k (pure state or mixture) can be 
written as a mixture of other normalized states k, with weights k ,  

k =  Y~k,k,; k, >0 ,  Z k , =  1, (2.07) 
f r 

(2.02) gives 
Dev(k; a) ---- E k, Tr(k,a 2) - -  (E k,Tr(k,a)) 2 

= E k ,  Dev(k,;a)  + ½ E k ,  k , ( E x ( l ~ ; a ) - - E x ( k , ; a ) )  2. (2.08) 
~' r jS  

The deviation of a in the state k is therefore only zero, if all occuring 
states k, (k, > 0) in the mixture give zero deviation and the same 
expectation value for a. Taking for the k, pure states (the eigen- 
states of k), we see that  a is only deviationless in the state k, if the 
latter is a pure linear combinatiofl or a mixture of linear combina- 
tions of eigenstates of a all with the same eigenvalue. 

Because one can easily find two non-degenerate quantum opera- 
tors (i.e. quantum operators with no more than one eigenstate f6r 
each eigenvalue), which have no eigenstates in common (e.g. p and 
q), there can be no quantum states in which all observables have 
zero deviation (deviationless states) 1). Here might seem to lie the 
reason why the observational statements of quantum mechanics 
are in general of statistical character. No doubt there is some con- 
nection, but this rapid conclusion should not be taken too rashly, 
because it implies an interpretation of the deviation, which is not 
entirely justified. Let us turn to this interpretation. 

In a statistical description of the 1st kind S 1 the deviation of a 
quant i ty  a is defined by 

Dev(a) ----- Ex((a - -  Ex(a)) 2) = Ex(a 2) - -  (Ex(a)) 2. (2.09) 

In an ensemble, in which this deviation is zero, a must have the 
same value in all samples. Then it follows that  for every function/(a) 

Ex(/(a)) = / ( E x ( a ) ) .  (2.10) 

Whereas in general a has a proper value only in a sample and in an 
ensemble only an average value (expectation value), one can speak 
of the proper value of a in an ensemble if the deviation is zero. 

In quantum mechanics it is not entirely clear what is meant by 
the square or another function of an observable. In order to discuss 
things, let us have recourse for a moment to the notion of 1.10 and 
let a stand for the observable represented by a(a < • a; problem 
~4). Then (2.09) is only identical with (2.02) for all states k if 
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a 2 +--+ a 2. Further  we have seen that a state k, in which (2.02) is 
zero, must be a (mixture of) linear combination(s) of eigenstates of a 
all with the same eigenvalue a~. In these states the eigenvalue of 
/(a) is/(a~,) and Dev(k;/(a)) = 0. We write the operator, which re- 
presents/(a) as f(a). If (2.10) shall be valid in a state k, in which 
(2.02) is zero, we must have 

Tr(kf(a)) =/(Tr(ka))  = ](a~,) = Tr(k /Ca)); Dev(k; f(a)) = 0. (2.11) 

The second part is a special case of the first. The first part requires 
that  the matrix elements of f(a) with respect to the eigenstates of a 
with the same eigenvalue a~ have to be the same as those of ](a) 
(i.e. equal to/(a~,)), the second part that  the matrix elements of f(a) 
with respect to the eigenstates of a with different eigenvalues a~, 
are zero like those of / (a) .  This means f(a) -----/(a) so that  I has to 
be satisfied. For every a, for which I is accepted, (2.10) always holds 
in states in which a has zero deviation. For those a, for which I is 
rejected, (2.10) breaks down even in such states. In the latter 
case it should be kept in mind that  if we speak about a~, as the proper 
value of the observable a in such a state, this is actually more or 
less misleading. 

Thus we could give a meaning to the deviation, as soon as we could 
give a meaning to problem ~4 (or the special case ~(5). This meaning 
would only agree with the one which is usually prematurely ac- 
cepted, as long as rule I would hold. From the quantummechanical 
point of view Oq there is no need for such a meaning. Meanwhile 
from the formal point of view the definiteness of the expression (2.02) 
remains of interest. 

2.02 The measuring device 1). The aim of an (ideal) measuring 
process is to infer (the most complete) data of the object system from 
the data of the observational perception. Object system and ob- 
server interact by  intervention of a chain of systems, which form 
the measuring instrument. This chain can be cut into two parts. 
The first part (which may be empty) can be added to the object 
system, the last part to the observer. Extended object system and 
extended observer interact directly. The (extended) object system 
is regarded as a physical system. I t  is described by  a physical treat- 
ment. The (extended) observer is unsusceptible of a physical treat- 
ment. Its part consists in an act, which must be stated without 
further analysis. The result of the measuring process should be in- 
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dependent  of the place of the cut  in the measuring system, provided 
the first par t  is ent irely accessible to a physical  t rea tment .  

We make  a simplified model  of the ex tended  object  sys tem in 
which all par taking sys tems have one degree of freedom. The original 
object  sys tem is .denoted b y  1, the successive sys tems of the measur- 
ing ins t rument  before the  cut  b y  2,3 . . . . .  n. Eve ry  pair of adjacent  
sys tems l - -  1 and l (l = 2 , 3 , . . . .  n) is coupled during a t ime interval  
(t~__4, t~__~). The t ime intervals must  be ordered so, tha t  

t2k+t > t2k--l. (2.12) 

For  the sake of s implici ty we impose the condit ion that  different t ime 
intervals do not over lap 

tk > tk--1. (2.13) 

Then the couplings between the various pairs of adjacent systems 
can successively be treated separately. 

In  1 we choose a complete system of orthonormal wave functions 
10[# (t). The time dependence can be described wi th the help of a 
H e r m i t i a n operator  H°(t) according to 

~ a  
i at ?;t~(t) = H°(t)?;t'(t)" (2.14) 

1 is coupled with 2 during the time interval  (to,/l). This means that  
during this t ime interval  the H a m i 1 t o n i a n Hi2(t ) of the com- 
bined sys tems 1 and 2 cannot  be split up  into the sum of two 
H a m i 1 t o n i a n s H,(¢) and H2(t) of the separate  systems. The 
sys tem 2 is supposed to be initially in the pure quan tum state ?2o(to). 

We impose two conditions on H12(t) and ?20(to). The first condition 
is tha t  H12(t ) - -  H°(t) must  be diagonal with respect to the sys tem 
of 

(Hl2(t) - -  H°(t))?[,(t) =. ?~t,(t)G~2(t). (2.15) 

Gta is an opera tor  with respect  to the variables of 2 (q-number), but  
an ord inary  number  with respect to the variables of 1 (c-number). 

When  1 is initially in the pure q u an tu m state  ?;t,(to), the final 
s ta te  of 1 and 2 together  is because of the wave  equat ion 

t~ a 
; at ?,2(t) = - -  H,2(t) ~012(t) (2.16) 

given b y  
tt t, 

i 
- T f d t  H"(0 • ( ~ ( ~ '  = ~ ( ~ '  e -  ~-f.~G~(0 /t ~ ~2.17) t. .t~,,to,.2o,to, .l~,,h, t. ~,2o~ 0 g 
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With  arb i t rary  chosen functions g~,(t) and 
t 

, - ~ - f d , ' g ~ , ( , ' )  (pt~(t) --- (?l~,(t)e ,, ; 
t 

--{ f d*'I--.Ct'l+c#(O) . , 

~ ( t )  = e ,. ~o~'o~ (to < t < t), (2.18) 

(2.17) becomes 
%,(tl)~,(t,). (2.19) 

The second condition, which we impose on Hx2(t ) a n d  (p20(t) is t ha t  
the (already normalized) (p2u(tl) must  be orthogonal  

tt 
f d, C-,#O + oval*)) 

- - - - ~ f d t ( - - g v i t ) + G v 2 ( O )  , .  , 
. e t ,  ~020(~0) ---- ~v" (2.20) 

The system of q~2~,(tl) need not be complete. 
For  t > tt, af ter  the  coupling has been dissolved, 1 and 2 have  

separate H a m i 1 t 0 n i a n operators Hi(t) and H2(t). The ortho- 
normal  functions (pl~,(tl) and  (p2~,(t2) then  t ransform into the  ortho- 
normal  functions 

t 

- { f d,' a,(,') 
q~l/,(t) -~ e h q~l/~(tl) 

and (2.21) 
t 

i 
- T f d , "  H.(,') * *~ ( t )  = ~ ,. ~ ( t l ) .  

The complete wave function (2.19) t ransforms into 

cpl~,(t)~p2~,(t) (t > tt). (2.22) 

The succeeding pairs of ad iacent  sys tems are coupled analogously.  
The complete wave funct ion of the  first m sys tems after  the  last 
coupling becomes, in the same w a y  as (2.22), 

qht,(t)q~2t,(t)...%~,(t) (tz,_..~ < t < t~-2) .  (2.23) 

More general  1 can, instead of being in a pure s tate  (?t~,(t0), be 
initially in a s tate  with statistical operator  kl(to), which then can 
be expanded  according to 

kt(to) = E ×tv~,(/o)ktm,(to) with x~v~,(to) = Tr(klv~, ( to)k  t (to)). (2.24) 
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The statistical operator of the first m systems after the last interac- 
tion then becomes with (2.23) 

ktz..~(t) = Z ×1,(to)k,m(t)k2m(t)... k~v(t ) (t2.--3 < t < t2~_2). (2.25) 
p,,v 

The interactions have affected the states of the partaking systems 
and established a correlation between them (entanglement). 

2.03 In/ringed states. When after the interaction the correlation 
between the state of an arbitrary system l(1 -<< l < m) and the state 
of the other m - -  1 of the first m systems is ignored, the latter state 
can irrespective of the former state according to (2.25) and (1.1 l) be 
described by the statistical operator 

klz..Iv--l) ~t+a...m(t) = Tr~ klz..,~(t) 

= Y~ x1~,~,(t0)klm,(t)...klz_l)~,(t)kl~+llm,(t).., l~w,,(t ) (2.26) 

(Trt denotes the trace with respect to the variables of l). More ge- 
neral the state of a selected series ll, 12 . . . .  lk (1 < l I < l 2 < . . . l ,  ~ m )  

out of the chain of the first m systems irrespective of the state of the 
other systems is described by  the statistical operator 

ka~,..a,(t ) ---- 2g xlm,(to)kam,(t)kl,m,(t)...k~,m,(t ) (t/> t~,__~). (2.27) 
P 

i 
(2.27) is the statistical operator of a mixture of pure quantum states 
q~a~ (t)~,~, ( t ) . . .  ~0~, (t) with weights xlv~ (to). The ignorance of the 
correlation with other systems has also partially destroyed the cor- 
relation between the selected systems themselves. According to the 
remaining correlation only individual pure quantum states q%,(t) 
of the systems l 1, l 2 . . . .  l, with the same Greek index occur together. 
We denote a state of a group of systems, which has come about 
by interaction with other, afterwards ignored, system.s as an infring- 
ed state. ((2.25) is the entangled state (2.27) the infringed state). 

We consider two particular cases of infringed states. First we put 
m = n and let the selected series consist of the systems 1 and n only. 
(2.27) then becomes 

kl,(t ) = X; ×lm,(to)klm,(t)k.m,(t) (t >/t2,~_3 ). (2.28) 
P 

The correlation between 1 and n, which is left in this infringed state, 
justifies the inference that  when for n the pure quantum state 
~.~(t) is realized, the corresponding pure quantum state V l~,(t) (with 
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the same ~) is realized for 1. With this inference the correlation is 
completely exhausted. 

In the second place we put m = n + 1 (supposing that the inter- 
action between n and n + 1, which crosses the cut, is still accessible 
to a physical treatment) and select the systems 1,2 . . . .  n. Then (2.27) 
gives 

klz..,(t) = l~ ×lm,(to)k,~,(t)k2,~(t)...k,m,(t ) (t > t2,-l). (2.29) 

(2.29) determines the infringed state in which the extended object 
system is left after the interaction with the observer, if the state of 
the observer is afterwards ignored. 

If in (2.29) we put n = 1, we get 

kl ( t  ) = X xlm~(t0)kl##(t) (t /> tl), (2.30) 
t~ 

which determines the infringed state of the original object system af- 
ter the interaction with the measuring instrument, irrespective of 
the final state of the latter (and of the observer). 

2.04 The measurement conclusion. When the original object system 
and observer are connected by  a measuring instrument, which con- 
sists of an unramified chain of one or more interacting systems, it 
follows from (2.28) that the conclusion about the original object 
system, which the observer can infer from his final perception, 
certainly cannot go further than to indicate which of the pure 
quantum states q%,(t) is realized. According to the quantum notion 
of observation 0q the observer can in principle actually infer that 
conclusion under ideal conditions and he cannot infer more under 
any condition. This rule establishes the connection between the 
mathematical formalism and the observers perceptions. The rule 
does not follow from the formalism. The formalism is in harmony 
with the rule. The rule justifies the representation of the formalism 
in terms of pure quantum states. 

The conclusion derived from the measurement thus consists in 
indicating which pure quantum state of the mixture (2.29) or (2.30) 
of the extended or original object system is realized after this 
measurement. It could indicate equally well the realized pure quan- 
tum state of an arbitrary system or group of systems of the measur- 
ing instrument. For a great number of measurements on identical 
object systems with identical initial operators the statistical pro- 
bability of realization of a pure quantum state with index tx is 
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according to the statistical interpretation of (2.29) or (2.30) ×l~,v(t0) 
(cf. 0q). The measuring result is independent of the place of the cut 
in the measuring instrument 1). 

Formally we can distinguish the following stages in the measuring 
act. First the object system is coupled with the measuring instru- 
menL which gives the entangled state, then the systems of the 
measuring chain are ignored, which gives the infringed mixture, 
from which finally the realized state is selected. They are represented 
by the scheme: 

initial state kt(t) = Z ~,kl~v(t) 
c o u p l i n g  ~ ~"" 

entangled state • xv~kl~,v(t)k2m(t) .... 
i g n o r a t i o n  ~ ~"v 

in]ringed state X ×m,klm,(t) 
s e l e c t i o n  ~ 

measured state ki~,(t ) 

2.05 The measuring o/observables. For every system l we can define 
a H e r m i t i a n operator as(t) for which the functions ~%,(t) form a 
system of orthonormal eigenfunctions with arbitrary prescribed 
eigenvalues at~(t ). as(t) commutes with H°(t) 

[H°(t), a/t)] ---- 0. (2.3 l) 

The condition (2.15) is then equivalent to the condition that  Ol2(t ) 
must commute with al(t), or in general 

[Hw+I)(t ), at(t)] = 0. (2.32) 

In the pure quantum state q~,~,(t) the observable as(t ) has the value 
at~,(t). A measurement, which decides which of the states ~%,(t) of l 
is realized, also determines the value of ai(t). It can be regarded as 
a measurement of the observable as(t ). This establishes the experi- 
mental meaning of the value of an observable." Meanwhile, re- 
membering 2.01, one should be careful in regarding aid(t) as the 
proper value of as(t ) . 

If all eigenvalues of as(t ) are different 

a,v(t) for ~ :# ,, (2.33) 

the value of at(t) on the Other hand uniquely determines the pure 
quantum state of the system l. Therefore, instead of indicating 
which state ~%,(t) of l is realized, the observer can in the ideal case 
(2.33) equally well (and otherwise less well) record the value of 

Physica XlI  28 



434 H.J .  GROENEWOLD 

al(t). Usually the measuring results are thus stated in terms of 
values of observables and not in terms of states. For this purpose it 
is immaterial whether these values (defined as eigenvalues) have a 
proper meaning in the sense of 2.01 or not. 

2.06 Correlated observables. Similarly a correlation between the 
states of various systems can also be expressed as a correlation be- 
tween the values of observables of these systems. As a particular 
case we consider the effect of ignoring the correlation with some 
systems (infringement) on the correlation between the remaining 
systems. This effect has in 2.03 been found to consist in the dis- 
appearance of the non-diagonal statistical operators kzv~It) (Vt v~ v) 
of the latter systems. This h a s  no influence upon the expectation 
values of those observables, for which the operators are diagonal 
with respect to the functions ~l~(t). That means that  the correlation 
between such observables, for which the operators c o m m u t e w i t h  
the az(t), remains unaffected. For other observables the non-diagonal 
elements are dropped and the correlation is more or  less destroyed. 
For observables, for which the operator has no non-z~ero diagonal 
elements with respect to the ~z~,(t), no elements remain and the cor- 
relation is entirely destroyed. 

2.07 The pointer reading. When for some system in the chain, say l, 
the functions ~z~,(t) read in q-representation 

o,(t)  -----.~(q, - -  q,~,), (2.34) 

so that  they are eigenfunctions of qz 

q~v,# = q,~V,~, (2.35) 

we denote the measurement as a (pointer) reading. Z is called the 
scale system. The measuring result of a reading can be expressed by 
the value of the coordinate of the scale system. 

A simplified model, which gives such a coupling between the 
systems ( l - -  1) and l, that  the values of the observables ae_1)(t ) 
are measured by the values of the coordinate q~, is obtained 1) 
with a H a m i 1 t o n i a n operator of the type 

H{v-t)~(t) = h(a(v_l)(t)) +/(a(~_l)(t))pv (2.36) 

The condition (2.32) is satisfied. With the choice 

g~(t) --'-- h(a~_t)~, (t) ) (2.37) 



ON THE P R I N C I P L E S  OF E L E M E N T A R Y  Q U A N T U M  MECHANICS 4 3 ~  

(2.18) gives 
tt i 

, - - ;  f ,zt l(aq_1)~,(t))p: V*(O e ,. V,o(to). (2.38) 

We suppose that  the wave function of the initial state of l reads in 
qrrepresentation 

(P,o(q,; to) = ~(q, - -  q,o), (2.39) 

so that  ~ has the initial value q~0 

q,•,o( to) ---- q,oV,o( to) . (2.40) 
(2.38) then gives 

tt 
%(fl) = S(qz-- q 0-- F(ac llA) ; F(a( tlA (2.41) 

If we put 
qt~ = q~ - -  F(a(~- l ) t , ) ,  (2.42) 

(2.41) becomes 
V,~,(tl) = 8(q, - q,t,)" (2.43) 

These wave functions are eigenfunctions of q~ with eigenvalues qz~ 

~q~t,(tt) = q~sp~(tt). (2.44) 

The orthogonality condition (2.20) requires 

qt~, :/: qzv for ~t :/: v, (2.45) 

which is at the same time equivalent to the condition (2.33). (2.45) 
is satisfied if 

F(a(v- l )~)  ~ F(a(~t)v) for Vt :/: v. . (2.46) 

The spectrum of the values qz~ (2.42) need not necessarily cover the 
whole domain of values of ch from - -  co until + co. 

The momentum operator Pz reads in qrrepresentation 

a 
P~ = i ~q~" (2.47) 

The matrix elements with respect to the functions (2.43) are 

0 
Tr(p,k,v~) = 7-  ~ ~(q'v - -  q'~')" (2.48) 

The diagonal elements (~ = ~) are zero. Therefore the correlation 
of the momentum p~ of the scale system with observables of other 
systems is entirely destroyed by the measurement of the canonical 
conjugate coordinate 4 .  
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2.08 Observational connections. For  a relation between observa- 
tional da ta  we need at least two measurements .  We consider two 
succeeding measurements  during the t ime intervals (to,tt) and (to,t't) 
with 

to > tl (2.49) 

performed on the same sys tem 1. The first measurement  measures 
the states ~l~(t) or a corresponding observable al (t), the second one 
measures the states 9'1~,(t) or a corresponding observable a't(t ). 

If  the first measuring result  indicates the  final pure q u a n t u m  state  
~01¢(t) (h < t < t~), the statistical operator  at the  beginning t~ of 
the second measurement  is klm,(t~), which is expanded  according to 

klm' ~ , k 1/~,v,(t0) (t;) = , ,(t o ' , 
P 

with (2.50) 
! l l i l 

xl~,~,v,~,(t0) = Tr(ktv,~,,(to)klm,(to). 

The statistical probabil i ty,  that ,  af ter  the  first measuring result has 
indicated the pure q u a n t u m  state  ~l~,(t) (tt < t < t~), the second 
measuring result will indicate the pure q u a n t u m  state  ~ , ( t )  (t > t'l) is 

x'tm,,~,v,(t~) ----- Tr(k'lv,~,(t'o) klm,(t~)) = I c?'1*¢(t~) q~lt,(t;)12. (2.51) 

This conditional probabi l i ty  is ac tual ly  the most  e lementa ry  ex- 
pression contained in the formalism, which denotes an observable 
connection and  which has a direct ly observable statistical meaning.  

When  the functions ~ , ( t )  coincide with the ~0(tt~), i.e. when a~(t) 
and a I (t) commute ,  (2.51) becomes 

x;~,,,, ,(t ;) = 8,,~ (2.52) 

and the second measuring result can be predicted with cer ta in ty  
from the first. In this case we have essentially the repeti t ion of a 
measurement .  (2.52) expresses the reproducibi l i ty  of the measuring 
result. 

2.09 Intermingled states. The entangled state of two object systems 
1 and 2 after  a coupling of the type  described above is of the kind 

k12 = Z ~q,~ kl/~v k2/~v. (2.53) 
p , ) v  

The probabi l i ty  of finding sys tem 1 in a s tate  k t and  2 in a state k2 is 

Tr(kt2klk2) = ~, xv~ Tr(kt#vkl ) Tr(k2~,vk2). (2.54) 
p,,v 

When k I and k2 coincide with the projection operators kl~ ~ and k2v~, 
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(2.54) becomes equal to x~8~,v. This might (wrongly) suggest that  
(after the coupling and before the measurement) the state of 1 and 2 
is the mixture 

k'12 = Z x ~ k l ~  k2~ (2.55) 

instead of the state (2.53). In this way the correlation between 1 and 
2 would be partially destroyed by the omission of the non-diagonal 
terms. In the mixture (2.55) the expectation value of the states k 1 
and k2 would be 

Tr(k[2ktk2) = ~, × ~  Tr(kl~, kt) Tr(k2~,~ k2) (2.56) 
/z 

instead of (2.54). I t  has been emphasized by F u r r y 8) (in a some- 
what different form and particularly against our common opponents, 
cf. 2.11) that  only if neither kl nor k 2 coincides with any of the kl~ ~ 
or k2~ respectively, (2.56) can be different from (2.54). Because the 
latter case hardly occurs in the relevant applications, one is apt 
to make the mistake of replacing (2.53) by (2.55) (and to draw un- 
justified conclusions whenever this case does occur). 

If 1 and 2 had been coupled with one or more further systems 
3, i . . .  according to 

kt~ .... = Z ×v~ k l~  k2~ k3~ . . . .  (2.57) 
IZ,V 

and these further systems had been ignored afterwards, the in- 
fringed state of 1 and 2 would correctly be given by (2.55) indeed. 
This infringed state is quite distinct from the entangled state (2.53). 

2.10 Multilateral correlation. In (2.53) the transition operators 
kl~v and k2 m belong to two systems of orthonormal wave functions 
71~ and 72~, which span the (generalized) H i 1 b e r t subspaces Rl and 
R2. An interesting case *) is that  for which k12 can similar to (2.53) 
also be expanded With respect to the transition operatbrs llp~ and 12p, 
belonging to any two systems of wave functions ~blp and ~b2p in 
Rt and R2, when one system is chosen arbitrarily variable but 
orthonormal and complete, the other system suitably to the first 

Xv~, ktm k2m = y" ~'o'v llp~ 12,o. (2.58) 
I.¢,V p,o 

A necessary and sufficient condition *) for the occurrence of this case 
is that  the x.~, are of the form 

~ = ~ ×~; I " , ,  I = ~. (2.59) 
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The factorization of x.~ means tha t  k12 is a pure qua n tum s ta te  of 
the combined sys tems 1 and 2 with wave  function 

%o12 = ~ x~, ~oi~ , c72~, , (2.60) 
P 

The unimodular  coefficients x~,/× could even be included in c?,~, or 

The special case under  discussion can easily be generalized to  the 
following case. The functions ~,~, and 92~, are taken  together  in 
groups q~l~,,, c?lw, . . . .  and q~2m, 92~, . . . . . .  which span the (generaliz- 
ed) H i 1 b e r t subspaces  Rn,R12 . . . . .  and R21,R22 . . . . .  respect ively  
(RI ---- Rn  + R12 + . . . .  and R2 ----- R2t + R22 + . . . .  ). In these 
subspaces we take  any  two sets of sys tems +tin, +t~ . . . . .  and 
%b2m, %b2p . . . . . . .  of which one set is chosen arbi t rar i ly  var iable  bu t  
or thonormal  and complete,  the other  su i tab ly  to the first. I t  is 
easily seen tha t  the  last par t  of condit ion (2.59) then has to be re- 
placed b y  ]x  v, I ---- x~. In 1-dimensional subspaces  Rl# and R2p all 
1-representations are essential ly the  same. 

An equivalent  formulat ion of the generalized case is ob ta ined  b y  
taking instead of any  two sys tems of wave  functions %hip and %b2p, 
as in the special case, two definite sys tems of which one is chosen 
arbi trar i ly fixed bu t  or thonormal  and complete,  the other  su i t ab ly  
to the first. Rn,Rl2  . . . . .  or R2t,R22, • • • • are then determined b y  the 
sharpest  division of R1 or R2 into subspaces,  which span l inearly 
independent  groups of q~l~, and %hip or q~2~ and +2p at the same time. 

We res t r ic t  ourselves to the special case. First  we show the ne- 
cessity of (2.59). Wi th  (1.13) it follows from (2.58) tha t  

x~, Trt (kl/zv It,p) = k,i, Tr2(k2v~, 12pa), 
(2.61) 

x~,Tr2(k2m 12p.) = X.pTrl (kirk, lip.). 

I t  follows direct ly tha t  

xwx~,Tr~(k~ml,ap ) = ),~pkp~Tr~ (k,~,~ll~p) (l ----- 1,2), (2.62) 

so tha t  (with x.~ ---- x~,, Xp. = ;~**p) 

[ x;,~ [2 = [ ;<~ [2 or Tr~ (k~,v 1,~) = 0 (l ----- 1 and 2). (2.63) 

Because one of the sys tems lt ,  * or 12m is arbi t rar i ly  variable and 
complete  in R~ or R2 the la t ter  a l ternat ive is excluded and we must  
have 

I ×~,~ I = ] )'~, I = ×2 = )$ (× _ ), > 0). (2.64) 
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With (1.13) it fur ther  follows from (2.58) t h a t  

Y- ×v~,Trl (kl m 11~0) k2~ ---- Xa 012o., 
(2.6s) 

Y~ ×v~Tr2(k2~ I2.p) kb. v ----- X.p l:p.. 

These relations connect  the arbi trar i ly and the sui tably  chosen 
systems and establish the or thonormal i ty  and completeness of the 
lat ter .  With  (1.08) we derive from (2.65) 

1 
12p.12.,p,---- X ×~X~,vTr1(klmll.p)Trt(kt~.,ltp,=.)k2m,, (2.66) 

and 
1 

12pp,~.¢= ~ ~ ×~,,j. Trl(kb,vll~p) Tr1(k1~,llp,¢)k2m,, (2.67) 
pp" p,V,l~" 

and similarly for in terchanged indices 1 and 2. (2.66) and (2.67) must  
be identical  according to (1.08). Because one of the sys tems lip . or 
12pa is arbi t rar i ly  variable and complete in Rt or R2, we must  have 
(remembering (2.64)) 

XI.~,vXvt , = X2Xp,/~; ~p,e~.p=~2~p,p (X = X > 0). (2.68) 

Then ×v~ and Xp. must  have the form 

Xv~ = x* x m I x~, I = x ;X., ----- X* X a, I Xp [ = X. (2.69) 

This shows the necessity of (2.59). 
The sufficiency can be shown in the following way. Choose, say 

in RI, a complete system of or thonormal  wave functions +lp and 
choose for each p a constant  ~p with [~, [ ----- X = ×. Then take the 
functions 

+2p = 1__ X x~ (+If, ~P,~) 72~,, (2.70) 
;kp /~ 

which are orthonormal and complete in R2. From (2.70) it follows that 

+lp = XpX __1 (qbtpq92~) 71~. (2.71) 

The indices 1 and 2 could equally well have been interchanged.  For  
the transit ion operators we get 

1 
: X ×~, Trl(klv~llap) k2m,, 12p~ ~ p,v 

(2.72) 
1 

lip ~ = X.p X Tr2(k2u~ 12.p) kt m 
p,v Xvp. 
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and 

Therefore 

×~,Tr l (k~v I top) = "AopTr2 (k2v/.~ 12m). (2.73) 

E ×v~ klm k2~,, = E ×,~ Trt (klmllap) llmk2 m 
~,~ ~,,,; p,o (2.74) 
= E ~opTr2(k2vl~12~p)llpok2/~v = E k~plIpol2p ~. 
I~,v ; p, o p,o  

This shows the sufficiency of (2.59). 
I t  is of impor tance  for the discussion of the measuring process, 

tha t  (contrary to the expecta t ion of R u a r k 5)) mult i lateral  cor- 
relation between more than  two systems is impossible. We first 
show this impossibili ty for the case of 3 systems. 

Suppose we would have the expansions 

k l~  = ~ ~ klmk2~k3~v = ~ ~pllml2pol3p~. (2.75) 
I.*,v p ,o  

With (1.13) it follows from (2.75) tha t  

~,Trl  (kl~,~ ltop) T.r2(k2~ 12o,) = ~pTra (ka~, lapo) (cycl.), 
(2.76) 

~%,Tr3(k3m 13op) = ZopTrl (klv~, llp,)Tr2(k2~, 12po) (cycl.). 

In the same way  as before it follows tha t  

I×m] 2 =  ]~'ml 2 or Tr~(kzmllop) = 0  ( l =  1 , 2 a n d 3 ) .  (2.77) 

Because one of the systems llpo must  be arbi t rar i ly  variable and 
complete in R~, we must  have 

I I = I x,o I = ×2 __ x2 (× _ x > 0). (2.78) 

I t  fur ther  follows f rom (2.76) tha t  

Tra(k3~,~ laop) Tr3(ka~ lap,) : 1 
or (2.79) 

Trl (kl~,~ llop)Tr2(k2~, 12,,) = 0 (cycl.). 
Then we must  have  

Tr~(k~,,l~op) = Tr2(k2~vl2oa) = Tr~(k~,,l~o~) ~ 1 or 0. (2.80) 

This would mean tha t  the systems of 1~,,, 12~, and 13po should (but 
for a s imultaneous change of enumera t ion  of the Greek indices of 
the three corresponding operators and  but  for unimodular  constants) 
be identical with those of k~,~, k2~,~ and  k3~. This is against the 
assumption.  Multi lateral  correlation between the states of 1, 2 and 3 
is therefore impossible. 



ON T H E  P R I N C I P L E S  OF E L E M E N T A R Y  Q U A N T U M  M E C H A N I C S  441. 

and 

so tha t  

For  more sys tems 1, 2, 3 . . . . .  the  impossibil i ty of mult i lateral  
correlation can easier be shown in the following way.  Suppose we 
would have the  expansions 

kma....= E x .~k l . . k2~ .ka~ .  . . . .  E X.oltp.120.lap. . . . . .  (2.81) 
/~,v p,o" 

Then 

Tra4... k123 .... = E ×m. k l ~  k2~/~ = ~ k00 110o 12o . .  (2.82) 
/z p 

Similar to (2.61) and (2.62) we get 

×~,Trl (kl~.~ 11,o) = X,oTr2(k2~. 12oo). 
(2.88) 

×.~Tr2(k2,. 12,,) = XoaTrt (k l . .  11oo) 

2 x~..rr,(klm. Ii00) ---- ? , ; . r r , (k, . .  1,0.) (l = 1,2), (2.84) 

× ~  = -4- Xoo or Tr~(kt~. 1zoo) = 0 (l = 1 and 2). (2.85) 

Because one of the  systems 1zoo is arbi t rar i ly  variable the lat ter  alter- 
nat ive is excluded and because the traces in (2.83) are non-negative 
we must  have 

×.. = x . . .  (2.86) 
Fur the r  we have similar to (2.65) 

Y~ Trl (kl . . l lo . )k2.~ = 12.o, 
" (2.87) 
E Tr2(k2.~1200)k1~ = 11.o, 

from which we derive 

llpp l t~ -= E Trl (k1~ 11o.) Trl ( k l ~  11~) k 2 ~  (2.88) 
/.L 

and 
ltpp ~pa = F. Trl ( k l ~  l lpp) ~p~ k 2 ~  (2.89) 

and similarly for in terchanged indices 1 and 2. Because (2.88) and 
(2.89) have to be identical  according to (1.08) we must  have 

Trl(klm, llpp)Trl(klm, ll~) = Trz(klm, llpp)~p~. (2.90) 

This would require 
Tr, (kl~ ~ l lpp) ---- Bp~ (2.91) 

for every  ~, p and ~, which is impossible. Multilateral correlation 
cannot  extend over more than  two systems. 
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The proofs given for the  special case of mult i laterial  correlation 
in the entire spaces RI, /?2 . . . . .  can easily be generalized to the ge- 
neral case of mult i la teral  correlation in the subspaces  Rn ,  R21 . . . . .  ; 
R12,Rz2 . . . . .  ; . . . .  only. 

Now we see tha t  also in the measuring process mult i la teral  cor- 
relation (in the special or in the generalized sense) cannot  be trans- 
mi t ted  through the chain of sys tems of the measuring inst rument .  
The correlation (2.28) is uniquely  determined.  This excludes the 
possibili ty of surpassing in the measurement  conclusion the max imum 
inference discussed in 2.04 b y  the applicat ion of mult i lateral  cor- 
relation. 

2.11 E i n s t e i n 's paradox.  We return to the  two object  sys tems 1 
and 2 in the mult i la teral  correlated s ta te  (2.58). 

If  the s ta te  of one of the  systems,  say  2, is ent i re ly  ignored, the 
infringed s tate  of I becomes  

×2 I~ kl~,~ = X 2 lg ll0 r (2.92) 

The sums (which are identical) denote  the project ion operator  of the 
(generalized) H i 1 b e r t subspace Rl. In the mixture  (2.92) all s tates 
in R1 have  the same probabi l i ty  ×2 = X2. If  Rl coincides with the 
entire (generalized) H i 1 b e r t space of wave  functions of I, the in- 
fringed s tate  (2.92) becomes ent i rely undetermined.  

If  in dealing with the entangled stat6 (2.58) one would make  the 
mistake pointed out  b y  F u r r y (cf. 2.09), one would  get 

x 2 Y. kl~k2~,~ = X 2 Z llpol2pp. (2.93) 

In dealing with (2.82) we have  seen tha t  (2.93) cannot  hold. (2.85) 
does not  express a correlation be tween  pure q u a n t u m  states of 1 
and pure quan tu m states  of 2 (in the way  a member  of (2.93) would 
do). 

If, however ,  (after the interact ion be tween  1 and 2, which esta- 
blishes the s ta te  (2.58)) one of the systems,  say  2, interacts  with a 
measuring ins t rument ,  which measures the s t a t e s  12pp, the infringed 
state of 1 and 2 together  after  the la t ter  interaction is 

;~2 y~ it • 12po" (2.94) 
p 

This mixture  is different for different types  of measurements ,  i.e. 
for different sys tems 12p p. (2.94) does express a correlation between 
peur states of 1 and pure states of 2. This correlation is of unilateral  
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type.  When  the measuring result selects for 2 the s ta te  12pp, the 
s ta te  of 1 is llpp. 

After  the interact ion be tween  1 and 2 has taken  place, an ob- 
servable bl of 1 with eigenstates llpa can be measured in two dif- 
ferent ways :  either b y  a direct measurement  on 1, or b y  measuring 
an observable  b2 of 2 with eigenstates 12p p (corresponding to llpp) 
b y  a direct measurement  on 2 (then X can be conceived as a par t  of 
the  measuring chain). At a first glance it might  seem surprising and 
perhaps  even paradoxical  tha t  it is still possible to decide which 
observable  of 1 will be measured  b y  a measurement  on 2 after  all in- 
teract ion with 1 has been abolished s) and tha t  it is possible to mea- 
sure independent ly  two incommensurable  observables  at and 
b l ( [a l ,b l ]  :/= 0) b y  applying the two measuring methods  side by  
side ~) ~). (Of course one should care for not making the mistake of 
(2.93), which would na tura l ly  lead to paradoxical  results). 

When  the eigenstates  of al are k l ~  and those of bt are llpp, a 
measurement  of at selects a s ta te  out  of the left member ,  a measure- 
ment  of bl  selects a s ta te  out  of the right member  of the expression 
(2.92) for the infringed s tate  of 1. The probabi l i ty  tha t  one measure-  
ment  selects the s ta te  klm,, if the other  selects the s ta te  llpp (or 
opposite) is according to (2.51) 

Tr(kl~llpp),  (2.95a) 

no mat te r  whether  at and bl are bo th  (successively) measured direct ly 
on 1 or (no ma t t e r  whether  successively or s imultaneously)  one of 
them on 1 and the other  one on 2. When  bo th  are direct ly measured 
on 1, the s ta te  in which 1 is left af ter  the succeeding measurements  
is klm, if the  final measurement  was tha t  of at,  it is llpp if the  final 
measurement  was tha t  of bl .  A paradoxical  si tuation .seems to arise 
if one asks in which s ta te  1 is left af ter  a~ has been measured  on 1 
and bt  on 2 (or opposite).  We have to remember  (cf. 2.08) tha t  all 
observat ional  s t a tements  bear  on "connections between measure- 
ments.  The s tate  in which ! is left has only an observat ional  meaning 
wi th  regard to a succeeding measurement  of an observable  of l, say 
cl with eigenstates m~,,.  When  the measurement  of al has selected 
the s ta te  kl~,~, the probabi l i ty  tha t  the measurement  of ct will 
select the s ta te  m t ~  is 

Tr (k l~mt**) .  (2.95b) 
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When the measurement of bl has selected the state llp m the pro- 
babili ty that  the measurement of ct will select the state m t ~  is 

Tr(llpprnl~). (2.95c) 

Thus we get two different probabilities for the same event. This is 
not unfamiliar in statistics, because the probabilities are (always) 
conditional. They have only a meaning for a great number of com- 
bined measurements of at, bt and cl. The probabili ty of finding a 
state klm, is ×2, the probabil i ty of finding a state llpp is )2, the pro- 
babili ty of finding a state m l ~  is then according to (2.95b) or (2.95c) 

x 2 ~, Tr(kl~,~, ml~)  or X 2 ~ Tr(llpp ml~) .  (2.96) 
P 

Only these sums have to be identical and they are so according to 
(2.92). The correlations between the measuring results for al, bt and 
cl are described by  (2.95). 

Let us consider once more the measurement of al and of bl, one 
of them directly on 1 and the other directly on 2. The latter measure- 
ment can also be conceived as a direct measurement on 1 (the system 
2 is then regarded as a part  of the measuring chain), which preceedes 
the first mentioned measurement. The only pecularity of the present 
case is that  after the coupling between the object system 1 and the 
first system 2 of the measuring chain of the earliest measurement has 
been abolished (and even after the succeeding measurement has 
been performed) one can thanks to the multilateral correlation be- 
tween 1 and 2 still decide which observable will be measured by  this 
earliest measurement. But  when we pay due regard to the correl- 
ations between the various measuring results, this leads to no para- 
dox. 

An illustrative example, which has been discussed by  E i n- 
s t e i n a.o. ') 4) and by  B o h r a.o. 8) 3) 5), is that  of two particles 
(each with one linear degree of freedom) in an entangled state for 
which the wave function reads in q-representation 

l ~ ¢ '+q'  P 
~12 = ~ 8(ql - -  q2 + Q) e T - - ~  (2.97) 

This state can be realized by  two particles 1 and 2 directly after 
passing through two parallel slits at a distance Q in a diaphragm. 
(2.97) describes the motion in the direction perpendicular to the 
slits, parallel to the diaphragm. The total  momentum P can be 
determined from the total momentum directly before the passage 
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th rough  the d iaphragm and the change of m o m e n t u m  of the dia- 
phragm.  The slits can be taken  so far apart ,  tha t  exchange effects 
can be neglected. 

(2.97) is of the form (2.60) wi th  (2.59), as can be seen by  expanding 
(2.97) wi th  respect to e.g. coordinate or m o m e n t u m  eigenfunctions 
of 1, and 2 

f i i i P 
- -  e T q* h~-h d~eT'#eTq'('~+-~-) £--'~+ 2-) (2.98) 

RI coincides wi th  the entire (generalized) H i 1 b e r t space of wave 
functions of 1. The infringed state  of 1 is ent i rely undertermined.  
After  a measuring result q2 = q2~, or P2 = P2p 1 is " l e f t "  in the state 

i 
1 eT q, CP--P,I (2.99) $ ( q I -  q2~, + Q) or 

and ql = q 2 ~ -  Q or Pt = P -  P2p respectively. In this way the 
coordinate or m o m e n t u m  of 1 is measured by  the  coordinate or 
m o m e n t u m  of 2 after  the interact ion between 1 and 2. We come 
back to this example in 5.06. 

3. Operator relations. 
3.01 Exponentials. In the ring of operators a generated by  two 

non-commut ing  H e r m i t i a n basic operators p and q, for which 

[p,q] = 1, i.e. pq  - -  qp  = ~ (h > 0), (3.01) 

we are going to derive a F o u r i e r expansion similar to tha t  in a 
commuta t ive  ring of functions a(p,q) of two real basic variables 
p and q. For  this purpose we need some exponent ial  relations. I t  
should be remembered tha t  we still have a ra ther  specialized case, 
because the commuta to r  (3.01) of p and q commutes  wi th  p and q. 

Wi th  (3.01) one has 2) 

+ ± L  l i  l i  
eTcP+~ = lim(1 (p + q))n----lim ((1 + n ~ P ) ( l  + n ~ - q ) )  n 

n ~  n ~ n-,oo 

1 i I i [ 1 i \('~--~)~ 
= l i m ( 1  2 = 

n ~  

= e T PeT q e -  ~ .  (3.02) 
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With  (xp + yq) and  (x'p + y 'q) instead of p and q we get for (3.01) 

[(xp + yq), (x'p + y'q)] = x y ' - - y x '  (3.03) 

and for (3.02) 
i , i i i , 

e- K ((~+x')p + ~+y I q) = e- ~ (~p+y~0 e- ~ (x'p+y'ql e -  ~ (~--.~'). (3.04) 

( Impor tant  special cases are y = x' = 0 or x ---- y' = 0). Fu r t h e r  
i i + i i i 

e- -  ~ (~p+,TqO e~- (~ ~0 e- K (~p+,m) ~ e ~ (~+y~ e-K (~-y~) (3.05) 

Analogous to the (symbolical) relation 

f fdq  de e-i ,-,+,,, = ~(x) ~(y), (3.06) 

(3.05) gives the operator  relat ion 

~ f f  ' + , , 
d~ d~ e-  ~- (~ ~* eX (.+y* e-~ (*p+~q) = ~(x) ~(y). (3.07) 

Fur the r  analogous to 

-~ f f f f  d. dy # '  dq'~,', q') ~-~ ' * + " ) ~ ' ~ ' + "  = ~(p,q), (3.08) 

we have  

~ f f f f  ' , dx dy d~ d~ e -  ¥ (¢,+~q0 a e--~ (,+yq) e-~ (~p+,~) e-~ (m+~ 

Affff ' eT(~,+~)e--~(b_,m = dx dy d~ d~ e - - ~  (~P+~ a 

f f  ' , 
= d ~  d-t] e - - K  ( [ P + ~ ¢  a t -~ (~P+~q) ~(~) ~(~)  = a .  (3.09) 

In the same way  as (3.08) and (3.06) show tha t  every (normalizable) 
function a(p,q) can be expanded  into a F o u r i e r integral  

f /  ' a(p,q) ----- dx dy e(x,y) e -~ t~t,+yql 

with (3.10) 

_~f f  (x,y) ---- dp dq a(p,q) e --~ ('q'+~q), 

(3.09) and (3.07) show tha t  every operator  a (with adjoint  a t) can be 
expanded into 

a = f f d x  dy o~(x,y) 
~ -  (~P+y~ 
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w i t h  a(x,y) = d~ d~] e -  "~ (~P+'gq) a e -  "~- (.rp+yq) e- ]- (~p+~q) . ( 3 . 1 1 )  

This is already the F o u r i e r expansion, but  the coefficients ~(x,y) 
can still be expressed in a more simple form. 

3.02 The trace. When U is a uni tary  operator 

U tU  = 1, (3.12) 

the uni tary  t ransformation 

a'~---UtaU; ~ ' =  U% ~,t = ~?tUt (3.13) 

leaves all operator relations invariant.  Therefore the latter can be 
derived in a suitably chosen representation. 

The eigenvalues q of q and p of p are assumed to run continuously 
between - - c o  and + oo. In q-representation the operators q and p 
can be taken in the form 

q = q , = q , p = p t _ _ _ 7 ~  or i ~q (3.14) 

(~]~q is meant  to operate to the left). With (3.04) we can write 
ei(Xp+yq)_~ i i i x 0 i x 0 

~__- e ' ~ X P e T Y q e ' ~ ' x P  = e 2 8g e-~Yfe ~ 0q (3.15) 

Expressing occasionally the inner product  explicitely by an integral, 
we get with (1.09), (3.15) and (1.05) 

i / "  x 8 1 eW (xp+yq) l / x ~ i 
~ Tr = - ~  Z dq ~t(q) e--~ ~ e-~Yq e ~ o, %,(q) 

• i 

- - - K u  

The result is independent  of the chosen representation. Comparing 
(3.16) with (3.07) and remembering the linear expansion (3.1 l) of a, 
we see tha t  Tra can invariantly be represented by the operator 
relation 

bff 1 Tra = d~ d~ e -  { {~+v~) a e T {~+'~ (3.17) 
h 

3.03 F o u r i e r  expansion. Rewriting (3.07), (3.09) and (3.11) 
with the help of (3.17) we get 

1 Tr e ¥ c ' p + ~ ) -  8(x) B(y), (3.18) 
h 
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and 

h f f  d x d y  T r ( a e - ~ ( q ' + Y * ) e ¢ ( * + Y q )  ----- a (3.19, 

a = f f d x  dy ~(x,y) e ~ (xp+yq) 
with (3.20) 

1 T r ( a  e - {  (xp+yq)) = 

(3.18), (3.19) and (3.20) are ent i re ly  analogous to (1.13), (1.14) and 
(1.15). (3.18) and (3.19) respect ively express the or thonormal i ty  and 
the completeness  of the  sys tems of operators  

1 e-~(~+~q0 (with var iable  x and y). 

(1.15) and (3.20) are the two ways  we use for the  expansions of 
operators.  

4. Correspondence. 
4.01 y o n  N e u m a n n ' s  rules. We now examine the rules of 

correspondence I, I I ,  I I I ,  IV and V'. Firs t  I and II .  
We show tha t  if be tween  the elements  a of one ring and the ele- 

ments  a of another  ring there is a one-to-one correspondence 
a < > a, w h i c h  satisfies v o n  N e u m a n n ' s  rules (cf. 1.10) 

if a < -~ a, t hen / (a )  < > l(a), I 

i f a <  > a a n d b <  > b ,  t h e n a + b <  . ~ a + b ,  II  

the two rings are isomorphous.  
We get using I and I I  

(a + b) 2 - -  a 2 - -  b 2 = ab + ba <-----+ a b  + b a  (4.01) 

and also using (4.01) 

a(ab + ba) + (ab + b a ) a -  a 2 b -  ba 2 = 2aba <--->- 2 a b a  {4.02) 

and further  Using (4.02) 

(ab + ha) 2 - -  b(2aba) - -  (2aba)b = 

= - - ( a b - - b a )  2 < , - - ( a b - - b a )  2. (4.03) 

Therefore we have 

ab ba <---> + ( a b -  ba) ,  (4.04) 
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and with (4.01) 

a b + - ~ a b  (for a l l a a n d  b) o r a b <  > b a  (for a l l a a n d b ) .  (4.05) 

This means that  the rings are isomorphous. 
It follows that,  if one ring is commutat ive and the other not, I and 

II are inconsistent 9). (When the commutators arc of the order of h, 
the discrepancy is according to (4.03) of the order of h2). 

4.02 Bracket expressions. Then V'. For the correspondence a ~ a 
between the commutative ring with generating elements p and q 
and the non-commutative ring with generating elements p and q 
with commutator  (3.01) (p 4--+ p and q ~ - +  q) we show that the 
rule (cf. 1.18) 

if a(p,q) ~ - +  a and b(p,q) < + b, then (a(p,q), b(p,q)) ~ - +  [a,b] V' 

is self contradictory. 
With 

p2 ~ > xl, q2 ~__> x2; p3 <____> Yl, q3 < > Y2 (4.06) 

we find from 

½ (p2,q) = p ~____> ½ [xl,q] = P, 
(4.07) 

½ (p2,p) = 0 ~ ½ [ x l , p ]  = 0 

(and similar relations for q2 and x2) that 

and from 

p2 < > p2 + cI, q2 <__~ q2 + c2 (4.08) 

½ (p3,q) ~ p2 <_____~ 33_ [Yl,q] = p2 + ci, 
(4.09) 

(p3,p)=o < > ½[yl,pl=O 

(and similar relations for q3 and Y2) that 

p~< > p3+3clp+dx, q3 <___>q3+3c2q+d2 (4.10) 

(ci, c2; dl, d2 are undetermined constants). Further we get 

~ (p3,q2):p2q<._~$;~(p3+3c,p+dl),(q2+c2)] .~ ½(p2q+ qp2) +c~q,(4. 
1 1) 

pq2 ~ ½ (pq2 + q2p) + c2P 
and 

_ 1 3 + .  d l ) ,  3c2q 1 (p3,q3) = p2q2 +__+ ~E(P 3clp + (q3 + + d2)] 
9 

__ ½ (p2q2 + q2p2) + ~ h 2 + clq2 + c2p2 q_ clc2" (4.12) 
Physica XII 29 
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With (4.11) we get 

.} (p2q,pq2)= p2q2 ~____~ ~ [(½(p2q + qp2) + qq) ,  (½ (pq2 + q2p)+  c2P) ] 

_____ ½(p2q2 + q2p2) + ~ 2 c l q 2 c 2 p 2 ½ c t C 2 .  (4.13) 

(4.12) and (4.13) can only be identical for cl = c2 = 0 and h = 0. 
Therefore V' is self inconsistent (the deficiency is of the order  of h2). 

4.03 W e y l's correspondence. And finally I I I  and IV with para- 
meters  p and q (i.e. for the same rings as in 4.02). We denote  the 
densi ty  function by  p(p,q). The rules (cf. 1.13) 

1 < > 1 ,  I I I  

if a(p,q) < > a and b(p,q) <----> b, 
then f f  dp dq p(p,q) a(p,q) b(p,q) = r r ( a b )  IV 

can be satisfied by  (1.55) 

a(p,q) = Tr(m(p,q)a), a = f f  dp d e p(p,q) m(p,q) a(p,q) (4.14) 

with a t ransformat ion  nucleus m(p,q), which satisfies (1.57), (1.58); 
(1.59), (1.60) 

rrm(p,q) = 1, (4.15) 

f f d p  dq p(p,q) m(fl,q) = 1; (4.16) 

Tr(m(p,q) m(p',q '))  = p-~(p,q) ~(p--p ' )  ~(q--q'),  (4.17) 

f f  dp dq p(p,q) Tr(m(p,q) a) rr(m(p,q) b) = 

= Tr(ab) (for every  a and b), (4.18) 

When we replace in (1.56) the complete  or thonormal  systems 
k~v(p,q) of (1.54) and k,v of (1.15) by  the complete  or thonormal  
systems 

1 
~_e-~-(,p+yql of (3.10) and e -~ (w+yq~ of (3.20), 

we find a solution 
' , 

m(p,q) = dx dye -£ (xp+yql e -  ~ (~r +yq) (4.19) 

of (4.15), (4.16) ; (4.17), (4.18) with the densi ty  function 

1 p(p,q) = ~ .  (4.20) 

Then we get for (4.14) 

(4.21) 

a = hdd dx dye ~ . ] j a p  dq e - ~  (xt,+yq) a(p,q). 
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Wi th  the F o u r i e r expansions (3.10) and (3.20) this correspon- 
dence reads 

--jjax ,~y <x,y) ~ ~"+" ~ ./~'l.~ a.~. a~, <~0,) i f  "" +"'  , (4.22) 

which is W e y l's correspondence 2). 

II  is a consequence of IV and is therefore  satisfied b y  the cor- 
respondence (4.21). We will see what  is left of I and V'. If  a ~ > a 
and b +---> b according to (4.21) we find with (3.04) 

= . . . .  f l a x  dy dx '  dy '  dp dq alp' d q ' .  a b  

i i i 
• eT {(x+x')p+(y+y'}q) e~-(,y,--~,,) e -  T(xp+yq+x'p'+Y'q') a(p,q) b(p,q). (4.23) 

Wi th  the variables  
p + p '  q + q '  

~ = x + x ' ,  . ~ = y + y ' ,  e - - I  ~ - -  
2 ' 2 

4' x - - x '  , y - - y '  
- -  j a t = 

2 ~ = 2 ' = P - - P "  ~ q - - q "  

this becomes 

(4.24) 

f ;  ; /  ' , 1 " d~d~d~ '  dB' d a d x d e '  dx' e T (~p+,Tq) e ~ c-~n'+nf') a b  = - ~  . . . .  . 

i 

e -  ~ (¢*+,*+~'*'+n'*') a(e + -[ a', • - -  ½ ~') b(a - -  ½ e',  • + ½ , ' )  
' , 

= d~ d~  d e  d z  e T (~P+~q) e - T  (~+~') 
v 

a(e + t ~ , * - -  ¼ ~) t ( e - -  t'0, * + i t )  

= d~ d~ de dx e T (~P+'qq) e - T  {~°'+TD') 

1 1 ,  a . , .a \  
• ~ ' , ~ - ~ 1  . 

The expressions in brackets  at the end are a symbolical  represent-  
at ion of T a y 1 o r expansion.  Wi th  the  subs t i tu t ion  

~ ~ x, r~ -÷ y, e ~ p, "~ ~ q t4.26) 

we get by  par t ia l  in tegra t ion 

: ~ (xp+yq) 1 
a b  @ffaxdye xffdp@. 

• e - -~p+yq)  a(p,q) e ~ ' ~ - N ~ )  b(p,q) . (4.27) 
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i 
This gives for the H e r  m i t  i a n  operators ½ (ab + ba) and ~-.  

• ( a b -  ba) the correspondence 

a(p,q) cos ~ ~ ~q 

~ ( ~  a(p,q) sin ~ ~p 0q 

8q -@p b(p,q) +--> ½ (ab + ba), (4.28) 

O ) i (ab--ba). (4.29) 3q Op b(p,q)+---+ -~ 

To the neglect of terms of order of h 2 and higher (4.28) and (4.29) 
would read 

a(p,q) b(p,q) ~ , ½ (ab + ba), (4.30) 

a(p,q)-~ ~-p Oq ~q ~-p b(p,q)< > ~  

(4.30) would lead to I, (4.31) is equivalent to V'. 
We examine which functions /(a) satisfy I. From (4.28) we see 

that the correspondence 

if a + - ~  a, then a" <--~ a" (for every integer n) (4.32) 

only holds if 

t~ ( ~ ~ ~ O) a ' = a  k+'(forall integerskand a ~cos~  op aq 3q ~p l). (4.22) 

First take for a a homogeneous polynomial in p and q of degree n. 
An elementary calculation shows that  the condition 

a cos ~ ~q ~q a = 

or 

a ~p Oq ~q ~-p] a = a  2 ( f o r 0 < 2 k  <n) (4.35) 

is only satisfied if a is of the form (xp + yq)n. Then it follows that 
any polynomial in p and q can only satisfy (4.33) if it is a poly- 
nomial in xp + yq. This finally means that  I can only be satisfied 
if a is a function of a certain linear combination xp + yq of p and q- 
With the help of the F o u r i e r expansion (4.22) it is easily seen that 
every (normalizable) function of xp + yq does satisfy I. Therefore the 
least restricted form of I, which is consistent with the correspondence 
(4.21) is 

/(xp + yq) <-~ /(xp + yq). (4.36) 
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As to V', we see from (4.31) that  for the correspondence (4.21) the 
bracket expression ((a(p,q), b(p,q))) (cf. 1.14) defined by  

if a(p,q) ~ - ~  a and b(p,q) +--+b, then ((a(p,q), b(p,q))) +--+ [a,b] (4.37) 

is given by  

((a(p,q),b(p,q))) = a(p,q)~-sln 2 8p ~q 8q ~-p b(p,q). (4.38) 

If a(p,q) or b(p,q) is a polynomial in p and q of at most 2nd degree, 
we have a special case for which the bracket expressions ((a,b)) and 
(a,b) coincide. 

The correspondence (4.21) is a solution of I I I  and IV. We have 
not investigated the possibility of other solutions with the same 
parameters p and q. 

5. Q u a s i - d i s t r i b u t i o n s .  

5.01 Proper and improper representations. With 
respondence (4.22) as a special solution of 

1 +--+ 1 

if k + - ~  k(p,q) and a + - ~  a(p,q), 

1 f £  
then Tr(ka) = -~JJdp dq k(p,q) a(p,q) 

W e y l ' s  cor- 

I I I  

IV 

(with parameters p and q and density function p(p,q) = I/h), we 
obtain a special case of a transformation between a representation in 
terms of operators k and a and a representation in terms of functions 
k(p,q) and a(p,q). Quantum statistics are usually represented in 
terms of operators, classical statistics in terms of functions. We as- 
sert that  the usual description is also the proper one. Tiae statistical 
operator k of the quantum representation and the statistical distri- 
bution function k(p,q) of the classical representation are non-ne- 
gative definite, but in general the quantum k(p,q) and the classical 
k are not. This makes that  for orthogonal states, for which 

Tr(klk2) = ~- dp d e kl(p,q) k2(P,e) ~-- O, (5.01) 

the product klk2 or k1(p,q)k2(J),q) vanishes in the proper representa- 
tion, but  in the improper representation it need not. The equations 
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of motion of the quantum k are described by  infinitesimal unitary 
transformations, those of the classical k(p,q) by  infinitesimal ca- 
nonical transformations (contact transformations), but  the equa- 
tions of motion of the classical k and the quantum k(p,q) are in 
general not of these types. Because the improper representation is 
formally equivalent to the proper one, it is (provided it is not mis- 
interpreted) a correct description, though it is in general a rather 
impracticable one. 

In spite of its deficiences, or rather because of them, we discuss 
some aspects of the improper representation of quantum mechanics 
in terms of k(p,q) and a(p,q), i.e. the quasi-statistical description of 
the 1st kind Ql (cf. 1.19). It  more or less illustrates the ways along 
which some opponents might hope to escape B o h r's reasonings 
and v o n  N e u m a n n ' s  proof and the places where they are 
dangerously near breaking their necks. 

5.02 Trans i t ion  /unctions.  For the transition functions k~,~(p,q) 
corresponding to the transition operators (1.03) according to (4.21) 
we find with the help of the q-representation (occasionally expres- 
sing the inner product explicitely by  an integral) similar to (3.16) 

k~,~(p,q) = x dy e "~ (xp+yq q' ~ ( q ' )  e Z ~ e-g Yq e 2 aq" ~(q ' )  

J dx ~ ( q )  e 2 Za e h xp = e 2 oq ?v(q) 

= f axv* (q (5.02) 

Because the wave functions 9~ are only determined but  for a 
factor e ~la ~'~, (¥ real), the k~(p ,q)  are only determined but  for a factor 
e~l ~ (rt,-~'~). The distribution functions, which are thus obtained with 
W e y l's correspondence 2) become identical to those given by  
W i g n e r l O ) .  

5.03 Proper  value. In a distribution k or k(p,q) a quant i ty  a or 
a(p,q) can be regarded to have a proper value if the condition (2.10) 

Tr(k f (a )  )' = / ( T r  (ka)) (5.03) 
o r  

• 1 . "  a(p,q)~ ) 
h f f  dp dq k(p,q) /(a(p,q)) / (K f j  dp dq k(p,q) (5.04) 
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is satisfied for every/ .  Whereas the validity of (5.04) is for a proper 
(non-negative definite) k(p,q) already guaranteed by  the validity 
of the special case/(a) ----- a 2, it is not for a proper k or an improper 
k(p,q). For a proper k the validity of (5.03) or (2.11) requires that a 
is of the form 

a(xp + yq) (5.05) 

and k an eigenstate of a. For any k(p,q) the validity of (5.04) re- 
quires that  k(p,q) is of the form 

- -  (5.o6 

which is a proper (i.e. non-negative definite) one. Because (5.03) and 
(5.04) are identical, th~ conditions (5.05/and fl5.06) are equivalent. 
This means that  the eigenstates of the operators a(xp + yqj and 
of no other operators correspond with proper (and orthonormal 
and therefore non-overlapping) distributions of the form (5.06), in 
which a~, is the corresponding eigenvalue. This case would be rather 
encouraging for a statistical description of the 1st kind S 1, if it 
were not just an exceptional case. 

The eigenfunctions of a(xp + yql are in q-representation 

i 1 
~p(q) = 1_]____ ey ( - -~ -  (yq--p)'+y(p)) for x :# 0, 

, (5.07) 

¢~p(q) = V'Y 8(yq - -  p) e T rCp) for x = 0. 

(y(p) real arbitrary). The corresponding eigenvalues are a{p) 

a(xp + yq)~0p = a(p)%. (5.08) 

p, which is the eigenvalue of xp + yq (for arbitrary fixed x and y), 
runs between - - o o  and + oo. The domain of eigenvalues of 
a(xp + yq) is therefore the same as that  of the functions a(z) 
( - -  oo < z < oo). This means that  the domain of the proper values 
of observables, which have such, are unrestricted by  quantum 
conditions. 

Inserting the eigenfunctions (5.07) in (5.02) we get 

( 2 ) ' ' q P~'-Pv+~"%"-~"~°~') (5.09) k~,~(p,q)=8 xp+yq P~" P~ e - T ( ( ~  , ,  2 

(The expression in brackets in the exponent in (5.09) is a canonical 
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conjugate  of xp + yq). The k~,~(p,q) are actual ly  of the form (5.06). 
5.04 The harmonic oscillator. After  we have t rea ted  in 5.03 

a special case for which the k(p,q) are of proper  type  themselves,  
we now deal with a case for which their  equat ions  of mot ion are 
of proper  type.  According to (1.43) and condit ion V' t hey  are if 
((H(p,q),k(p,q))) coincides with (H(p,q),k(p,q)) and according to 
(4.38) this is the case for every  k(p,q) if H(p,q) is a polynomial  in 
p and q of at most  2nd degree. This condit ion is satisfied for the  
harmonic oscillator, for which H(p,q) coincides with the classical 
H a m i l t o n i a n  

p2 m°~2 2 2 (P,2+q,2). p ,_  P q ' = q ~ .  (5.10) 
H(p,q) = T m  + T q = ' ~,/mco ' 

m is the mass, to the classical circular f requency of the binding. We 
consider p' and q' as new canonical coordinates  and omit  the dash.  

In q-representation the normalized s ta t ionary  solutions of the  
wave equat ion  

h 0  ~ ( _ ~  02 ) 
i ot ~"(q) = ~- Nrq ~ + ¢ *"(q) 

(5.11) 

are 

g nn  
'~"(q) ~/2"n! v ~  

( n =  0,1,2 . . . . .  ). (5.12) 

The H e r m i t i a n  polynomials  H,, (@hh) have 

function 

- - ~ q  1 ( ~ /" [ q 
e - =  ,,=o ~ -n-(.\--~] H , k - - ~ ] .  

the generat ing 

(5.13) 

(5.02) becomes with (5.12) 

1 _L q 
k.,.(p,q) . . . .  ~dx e-  2~ (q+~l' H 

v'2"+"n !m !~hJ " \ - - ~ - - /  

(x/ 
i 1 x t  q - - - -  
T ~p ~T (q--~) -- 2 ---i(,,--~)o,t . e e rl.i--~-~-, l e  . (5.14) 

\ v r t /  
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al. 

With (5.13) we get  

[ m  !n ! - ~  k,.,, (p,q) e'(,,,--,,)o~' 
ra~tt 

1 l d  I x ' -  1 x 2  i 1 x :  1 x t  
- -  ~ d x  e -~ (q+i) - - g  ($-q-i) eT XPe -ff (q-~) --~ (~-q+ ~) 

1 [(q + ip) (q .---ip) - -2~ (q + i#) --2~ 1 (q ---ip) +2~'q] 
= 2 e - T  

= 2 e  ~ , , v , _ ~ = o ~ L - ~ ( q + i p )  ~(q--ip) - - ~  . (5.15) 

This gives 

, , ~ (,,+q,)'~'"~",") ( - -  1)" 
km,(p,q) = 2 V m.  I, l e .=o (m--×)!(n--x)!×l  (q+ip)m-K. 

/ ~ \ m + n  

1 t * 1 /  [ m - - n  [ rain (re,n) 
- - 2 v ' m ! n T e - ~ I ~ + q l  V 2 ( - - 1 )  K 
_ . ~ (p2+q2) ~=oZ (m--×)! (n- -×) !×l"  

_= 2 (_.  1),~x(m,,,) 
max(m,n) ! 2 e- -f - - h  (p2+q2) 

L ( , . _ . , )  ( 2  ) i (,.---) (~r¢ t.. ~- --o0 "..(', '0 ~ ( p 2 + q 2 )  e . (5.16) 

The L ~  ) are associated L e g e n d r e polynomials,  k,.,,(p,q) is 
separated into a product  of functions of the canonical conjugates 
½(p2 + q2) and arc tan (p/q). The k,.,,(p,q) actual ly form a complete 
or thonormal  system. For  the  distr ibution function k~,.(p,q) of the 
rn th eigenstate of ½(p2 + q2), the average value of ½(p2 + q2) is 
(m+½)k, but  it is not  a proper value. 

With  (5.10) the t ransformat ion  (1.47) gives the contac t  t rans-  
formation de termined by  

dp dq cop, (5.17) 
dt ---- - -  o~q, - ~  

with solutions 

p = a cos (cot - -  X), q = a sin (cot - -  X). (5.18) 
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The representative point in the phase space of a superstate rotates 
uniformly about the origin with constant radius a/p 2 + q2 and cir- 
cular frequency co. The rotation of the entire distribution k,nn(p,q) 
with this circular frequency co produces according to the last factor 
of (5.16) a periodicity with circular frequency ( m - - n ) o ~  (like a 
rotating wheel with I m - - n [  spokes). Also this would have a 
hopeful aspect for a description of type S t, if it were not one out of 
a few exceptional cases. 

5.05 The scale system. We shortly return to the measuring process. 
We start with the most favourable case for a description of the 1st 
kind S 1 and consider a system I in the measuring chain, for which the 
distributions k~m,(p;,q, ) do not overlap. The corresponding k , ~  
are then eigenstates of an operator of the form xp~ + yq; (cf. 5.03). 
The scale system is a special case (x = 0), which shows all essential 
features. According to (5.09) we have 

k~,v(p~,q~) = ~ q~ qt~, q~ e-~ Cq~,--ql#l. 

By ignoration of one or more systems of the measuring chain the 
non-diagonal functions (~ =# v) are dropped and only the diagonal 
functions remain. Instead of (5.19) we get 

k;~,v(p~,q,) = ~(q, - -  q~) ~(q~, - -  q,~). (5.20) 

(The latter ~-function is actually a remainder of the ignored distri- 
bution functions). The effect on (5.19) of ignoration of other systems 
is formally the same as that  of integration over p with density 
function 1/h. This illustrates even more plainly than before (cf. 2.07) 
how the correlation between p~ and other observables is completely 
destroyed by  the reading of ql. So far there is no difficulty with an 
interpretation of the 1st kind. We are only concerned with the value 
of q~, which is a proper value and uniquely determines the distribu- 
tion (5.20). The value of p~ is indifferent. As soon as inference is 
made about other systems in the chain with overlapping k~,~(p,q), 
correct results are only obtained after the integration over pt (with 
density function 1/h) has been performed (cf. 1.19). In a description 
of the 1st kind this integration could only be interpreted as an 
averaging over a great number of measurements. But  the integra- 
tion has already to be performed in a si,ngle reading and therefore an 
interpretation of the 1st kind is excluded. 
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5.06 E in s t e i n's paradox. The multilateral correlated state 
(2.97) has according to (5.02) the distribution 

kl2PO e O ( P l , q t  ; P2,q2) ~ 8(q l  - -  q2 -1- Q)8(px + P2 - -  V ) .  (5.21) 

This shows clearly the correlation between ql and q2 and between p, 
and p2.The similarity.to a genuine distribution of the I st kind is very 
tempting. 

Because (5.21) is highly singular we also consider the distribution 

k'2p'°'J'"°"(P"q';P2'q2)=8( e l - q 2 ÷  Q'+Q")2 8\pl( + P2 P'+P"2 

i P '--P'"  i (Pt'-'Pt) 
• e -  ~- (q'+q') ~ e ~ (5.22) 

(properly instead of k5.21) we should use eigendifferentials). The in- 
fringed distribution after a measurement of q2 or P2 can be found 
from. (5.22) by integration over P2 or q2 respectively with density 
function 1/h. This gives 

) i P'+P'" i P'+P" 
-~81 qi--q2 + Q' +2 Q''" E--T (qt+q') 2 g] (P,--~)(Q'--0")(5.23) 

o r  

-~81 P~ + P2 P' +2 P' '  e-~ (p,--e,) o'-~0"" e- ~ (5.24) 

respectively. For the distribution (5.21) this becomes 

8(ql 1 - -q2  -+- Q) or ~-8(p, + P 2 -  P). (5.25) 

The correlation between Pl and P2 or qt and q2 respectively has en- 
tirely disappeared. 

If the state of 2 is entirely ignored, the distribution of the infringed 
state of 1 can be found from (5.22) by integration over P2 and q2 
with density function 1/h. This gives 

1 i i i P ' O ' - P " O "  
~- e -  X q,(e'-P") e=~ p,(o'--Q") e n 2 (5.26) 

For the distribution (5.21) the result is I/h, the infringed state is 
entirely undetermined (the normalization can be understood from 
(5.26)). A measuring result q2 = q2~ or P2 -~ P2p selects from (5.23) 
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or (5.24) for 1 the distribution 

1 B ql--q2~ + e - T  e~ (p,---~jIQ'--o") (5.27) 
h 2 

o r  

p , + p , , ~  0'--0" i (q ,+~) (p ,_p , , )  
h 8  Pl + P2p 2 eT (p,--t,,p) 2 e (5.28) 

For (5.25) this gives 

1B(ql 1 - -  q2~ + Q) or T~ ~(Pl + P2p - -  P).  (5.29) 

Also in this example, in which all distribution functions derived 
from (5.21) are non-negative definite, it is already.the particular 
part of the immediate integration over half of the parameters even 
in a single measurement, which does not fit into an interpretation 
of the 1st kind. 

These few attempts and failures to carry through a genuine statis- 
tical description of the 1st kind S 1 may suffice to illustrate the inten- 
tion and troubles of such a conception. 
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