
Multiple Groenewold Products:
from path integrals

to semiclassical correlations



1. Translation and reflection bases for operators

Translation operators,

correspond to classical translations,
within the classical phase space,

They form a complete operator basis, so that any operator

with the expansion coefficients:

This is the chord symbol of the operator Â.



The Fourier transform of the translation operators defines
unitary reflection operators,

corresponding to the classical reflections,                          .

An arbitrary operator, Â, can be decomposed in this basis:

such that the expansion coefficient

In the case  of the density operator,

W(x) is just the Wigner function.

Grossmann
Royer

is the Weyl-Wigner symbol for Â. 
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is determined by the quantum translation group:
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The final translation operator corresponds to 
the overall classical translation and                    
is the symplectic area of the (n+1)-sided polygon 
formed by the n translations.
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This area reflects the associative, 
but noncommutative properties 
of the operator product.

Tecelating the polygon with triangles, specifies
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Projections of phase space polygons
onto conjugate planes may have
complex self-intersections:



The Weyl symbol of this product,
the Fourier transform of the chord symbol,
is neatly written in terms of the multivariable function,
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such that the Weyl representation of the product is just

)xx,...,('...'
1

AA
n



x2x22x1x11
21

12
|)x(|)x(

xx2
exp)x(


















 AAiAA


We have a multiple Groenewold-Moyal-star product.
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Except for the polygonal factor,
would be just a product of Weyl symbols,
Thus, the full multiple Fourier transform is simply expressed as
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For a single pair of operators, we regain



What about direct use of the Weyl representation?
The simplest case is for an even number of operators:
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The properties of the quantum affine group
(reflection x reflection  = translation) 
(reflection x translation = reflection) 
then lead to: 
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Again we have a polygon determining
the phase, but
is now specified by the centres of its sides.
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2. Path integral for the Weyl propagator: 
semiclassical limit

The Weyl Hamiltonian, H(x), is close 
to the classical Hamiltonian, within order of
In the limit of small times, the Weyl propagator,
i.e., the Weyl symbol for the evolution operator,         is
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Then the path integral for finite times 
is merely the product formula, itself:
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If the Hamiltonian separates into kinetic and potential energies,
this is the Weyl transform of the Feynman path integral:
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The phase added in the transform fills in 
the area between the polygon and the q-axis. 
The full area can then be covered by thin strips.
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Stationary phase evaluation, for each centre       demands that:
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In short, the trajectory at each centre must be
tangent to the respective side of the polygon.

In the limit,             , the stationary polygon
defines a single classical trajectory, 
with its endpoints centred at x. 
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The semiclassical Weyl propagator is then

if there is a single trajectory with centre x Berry



Usual generating functions specify a trajectory by
a pair of positions, (q, q’) while momenta (p, p’) are free.
Here, we have a fixed centre with free chord. 

s(x)
The full centre action
is S(x)= s(x) – Et .

The centre action or centre generating function, S(x), 
specifies a finite evolution through‘Hamilton’s equations’:

The  monodromy matrix, M, determines 
the linearized transformation,
between the tips of the classical trajectory.



3. Compound unitary operators

Multiple evolving correlations among observables:

Define the intermediate steps:

where each of the operators
undergoes a Heisenberg evolution:

then

including Loschmidt echo, or fidelity.



Thus, the evolving correlation becomes

where the kernel for the evolution for the initial correlation
is defined as

But the reflection operators are also unitary, so that this sequence
can be considered as a single compound unitary operator.
It defines a quantum evolution corresponding to
a classical compound canonical transformation.



Assume that the compound Weyl propagator,
shares the standard semiclassical form
as each individualpropagator,
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That is, assume
that the compound
classical action is
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Likewise, the amplitude of the compound propagator
is determined by the monodromy matrix of the full motion:
The product of the linearised transformation for each segment:

reflections evolutions

The monodromy matrices for the reflections are independent
of the position of their reflection centres, but M and S(x)
depend on all the centres                          ,
that parametrize a family of canonical transformations.



Now one requires tr Û, but the trace of any operator
equals the phase space integral of its Weyl representation:

The only explicit dependence of U(x) on x lies in 
Since the chord centred on x depends only on the other centres,

then



But if the chord centred on x is zero, the selected trajectory
is periodic!

Then stationary phase evaluation:



The appropriate trajectories for a semiclassical propagator
are determined by boundary conditions. If the finite evoution
is specified by Hamilton’s differential equations, 
there is a practical root search problem to find the trajectory.

Also, in the case of the trace, one must search for
the periodic trajectories.

A further problem concerns caustics:

4. Initial value representation



There may be several trajectories with the same centre:

A pair of chords coalesces
for a centre, x, on a
centre caustic.

The caustic singularities of the Weyl propagator
are loci of centres, at which an eigenvalue of M,

In the case of the trace of the propagator,
the caustics arise at periodic orbit bifurcations:
They occur along codimension-1 surfaces
in the parameter space

.1



Let us then reinterpret tr Û as the Weyl representation of a
reduced compound unitary operator:

that is,

This has one less reflection than Û, but it has an analogous
semiclassical approximation:



The same figure as before is now interpreted as
an open polygonal line, going from .xtox 0

_
0



Each branch of the generating function          is constructed
from a compound trajectory that satisfies
But there is still a root search and caustics… 
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The initial value representation (IVR) now results from
the change of variable in the integral for the correlation

Thus, one changes the integration variable to the initial value
of the classical trajectory: The Jacobian is
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Thus, the semiclassical approximation for the evolving correlation
becomes:

where now all classical variables are determined 
by the initial value of the compound trajectory: .x _

0

No more root search and no more caustics!



5. An example: IVR for the quantum fidelity

can be expressed in terms of an echo operator,
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Thus, we obtain the IVR:

This is exact for a pair of harmonic oscilators.



Vaniceck’s dephasing representation results
by approximating the action within classical perturbation theory
as the time integral of along a single trajectory:)()( xHxHH  



5. Discussion:

i. General rules for phase evaluation through caustics:
These become zeroes of the integrand, leading to sign changes:

i. Numerical computations for nonlinear evolutions
(Comparison with Hermann-Kluk computations).

iii.   Adaptation to nonunitary (Markovian) evolution.

iv.   Semiclassical evaluation for reduced density operators.

The exchange of focus from the individual semiclassical
propagator to complete evolving correlations pays off!
Some care needs still to be taken:
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