Multiple Groenewold Products: from path integrals to semiclassical correlations

1. Translation and reflection bases for operators

Translation operators,

$$
\hat{T}_{\boldsymbol{\xi}}=\exp \left\{\frac{i}{\hbar}(\boldsymbol{\xi} \wedge \hat{\mathbf{x}})\right\}
$$

correspond to classical translations, $\mathrm{x}_{0} \mapsto \mathrm{x}_{0}+\boldsymbol{\xi}$ within the classical phase space, $\{\mathbf{x}=(\mathbf{p}, \mathbf{q})\}$

They form a complete operator basis, so that any operator

$$
\hat{A}=\frac{1}{(2 \pi \hbar)^{N}} \int d \boldsymbol{\xi} \tilde{A}(\boldsymbol{\xi}) \hat{T}_{\boldsymbol{\xi}}
$$

with the expansion coefficients:

$$
\tilde{A}(\boldsymbol{\xi})=\operatorname{tr}\left(\hat{T}_{-} \boldsymbol{\xi} \hat{A}\right) .
$$

This is the chord symbol of the operator \hat{A}.

The Fourier transform of the translation operators defines unitary reflection operators,

$$
2^{N} \hat{R}_{\mathbf{x}}=\frac{1}{(2 \pi \hbar)^{N}} \int d \boldsymbol{\xi} \exp \left\{\frac{i}{\hbar}(\mathbf{x} \wedge \boldsymbol{\xi})\right\} \hat{T}_{\boldsymbol{\xi}},
$$

corresponding to the classical reflections, $\mathbf{x}_{0} \mapsto 2 \mathbf{x}-\mathbf{x}_{0}$.
An arbitrary operator, \hat{A}, can be decomposed in this basis:

$$
\hat{A}=2^{N} \int \frac{d \mathbf{x}}{(2 \pi \hbar)^{N}} A(\mathbf{x}) \hat{R}_{\mathbf{x}}
$$

such that the expansion coefficient

$$
A(\mathbf{x})=2^{N} \operatorname{tr}\left[\hat{R}_{\mathbf{x}} \hat{A}\right]
$$

is the Weyl-Wigner symbol for \hat{A}.
In the case of the density operator,

$$
\hat{\rho}=2^{N} \int d \mathbf{x} W(\mathbf{x}) \hat{R}_{\mathbf{x}}
$$

Grossmann
Royer
$\mathrm{W}(\mathrm{x})$ is just the Wigner function.

The chord symbol for a product of operators, $\hat{A}_{n} \hat{A}_{n} \ldots \hat{A}_{1}$,
$\widetilde{A}_{n} \tilde{A}_{n-1} \ldots \tilde{A}_{1}(\xi)=\int \frac{d \xi_{n} \ldots d \xi_{1}}{(2 \pi \hbar)^{n N}} \widetilde{A}_{n}\left(\xi_{n}\right) \ldots \widetilde{A}_{1}\left(\xi_{1}\right) \operatorname{tr} \hat{T}_{-\xi} \hat{T}_{\xi_{n}} \ldots \hat{T}_{\xi_{1}}$
is determined by the quantum translation group:

$$
\hat{T}_{\xi_{n}} \hat{T}_{\xi_{n-1}} \ldots \hat{T}_{\xi_{1}}=\hat{T}_{\xi_{1}+\ldots+\xi_{n}} \exp \left[\frac{-i}{\hbar} D_{n+1}\left(\xi_{1}, \ldots, \xi_{n}\right)\right]
$$

The final translation operator corresponds to the overall classical translation and $D_{n+1}\left(\xi_{1}, \ldots, \xi_{n}\right)$ is the symplectic area of the $(n+1)$-sided polygon formed by the n translations.

Tecelating the polygon with triangles, specifies

$$
D_{n+1}\left(\xi_{1}, \ldots, \xi_{n}\right)=\frac{1}{2}\left[\xi_{1} \wedge \xi_{2}+\ldots+\left(\xi_{1}+\ldots+\xi_{n-1}\right) \wedge \xi_{n}\right] .
$$

This area reflects the associative, but noncommutative properties of the operator product.

Projections of phase space polygons onto conjugate planes may have complex self-intersections:

The Weyl symbol of this product, $A_{n} \ldots A_{1}(\mathrm{x})$, the Fourier transform of the chord symbol, is neatly written in terms of the multivariable function,
${ }^{\prime} A_{n} \ldots A_{1}^{\prime}\left(\mathrm{x}_{n}, \ldots, \mathrm{x}_{1}\right)=$

$$
\int \frac{d \xi_{n} \ldots d \xi_{1}}{(2 \pi \hbar)^{n N}} \exp \left[\frac{-i}{\hbar} D_{n+1}\left(\xi_{1}, \ldots, \xi_{n}\right)\right] \prod_{j=n}^{n} \widetilde{A}_{j}\left(\xi_{j}\right) \exp \left[-\frac{i}{\hbar} x_{j} \wedge \xi_{j}\right],
$$

such that the Weyl representation of the product is just

$$
' A_{n} \ldots A_{1}^{\prime}(\mathrm{x}, \ldots, \mathrm{x})=A_{n} \ldots A_{1}(\mathrm{x})
$$

Except for the polygonal factor, ${ }^{\prime} A_{n} \ldots A_{1}^{\prime}\left(\mathrm{x}_{n}, \ldots, \mathrm{x}_{1}\right)$ would be just a product of Weyl symbols, $A_{n}\left(\mathrm{x}_{n}\right) \ldots A_{1}\left(\mathrm{x}_{1}\right)$.
Thus, the full multiple Fourier transform is simply expressed as
${ }^{\prime} A_{n} \ldots A_{1}^{\prime}\left(\mathrm{x}_{n}, \ldots, \mathrm{x}_{1}\right)=\exp \left[-i \hbar D_{n+1}\left(\frac{\partial}{\partial \mathrm{x}_{1}}, \ldots, \frac{\partial}{\partial \mathrm{x}_{n}}\right)\right] A_{n}\left(\mathrm{x}_{n}\right) \ldots A_{1}\left(\mathrm{x}_{n}\right)$.
We have a multiple Groenewold-Moyal-star product.

For a single pair of operators, we regain

$$
A_{2} A_{1}(\mathrm{x})=\left.\left.\exp \left[-i \frac{\hbar}{2 \partial \mathrm{x}_{1}} \wedge \frac{\partial}{\partial \mathrm{x}_{2}}\right] A_{1}\left(\mathrm{x}_{1}\right)\right|_{\mathrm{x}_{1}=\mathrm{x}} A_{2}\left(\mathrm{x}_{2}\right)\right|_{\mathrm{x}_{2}=\mathrm{x}}
$$

What about direct use of the Weyl representation?
The simplest case is for an even number of operators:

$$
A_{n} \ldots A_{1}(\mathrm{x})=\int \frac{d \mathrm{x}_{n} \ldots . \mathrm{x}_{1}}{(\pi \hbar)^{n N}} A_{n}\left(\mathrm{x}_{n}\right) \ldots A_{1}\left(\mathrm{x}_{1}\right) \operatorname{tr} \hat{R}_{\mathrm{x}} \hat{R}_{\mathrm{x}_{\mathrm{n}}} \ldots \hat{R}_{\mathrm{x}_{1}} .
$$

The properties of the quantum affine group (reflection x reflection $=$ translation) (reflection x translation $=$ reflection) then lead to:

$$
A_{n} \ldots A_{1}(\mathrm{x})=\int \frac{d \mathrm{x}_{n} \ldots d \mathrm{x}_{1}}{(\pi \hbar)^{n N}} A_{n}\left(\mathrm{x}_{n}\right) \ldots A_{1}\left(\mathrm{x}_{1}\right) \exp \left[\frac{i}{\hbar} \Delta_{n+1}\left(\mathrm{x}_{1} \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)\right]
$$

Again we have a polygon determining the phase, but $\Delta_{n+1}\left(\mathrm{x}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$ is now specified by the centres of its sides.

2. Path integral for the Weyl propagator:

semiclassical limit

The Weyl Hamiltonian, $H(\mathbf{x})$, is close to the classical Hamiltonian, within order of \hbar. In the limit of small times, the Weyl propagator, i.e., the Weyl symbol for the evolution operator, \hat{U}_{t}, is

$$
U_{t}(\mathrm{x}) \xrightarrow[t \rightarrow 0]{ } \exp \left[-i \frac{t}{\hbar} H(\mathrm{x})\right] .
$$

Then the path integral for finite times is merely the product formula, itself:

$$
U_{t}(\mathrm{x})=\frac{\lim }{n \rightarrow \infty} \int \frac{d \mathrm{x}_{n} \ldots d \mathrm{x}_{1}}{(\pi \hbar)^{n N}} \exp \left\{\frac{i}{\hbar}\left[\Delta_{n+1}\left(\mathrm{x}^{2}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)-\frac{t}{n} \sum_{n^{\prime}=1}^{n} H\left(x_{n^{\prime}}\right)\right]\right\} .
$$

If the Hamiltonian separates into kinetic and potential energies, this is the Weyl transform of the Feynman path integral:

$$
\left\langle\mathrm{q}_{+}\right| \hat{U}_{t}\left|\mathrm{q}_{-}\right\rangle=\int \frac{d p}{(2 \pi \hbar)^{N}} U_{t}\left(\mathrm{p}, \frac{\mathrm{q}_{+}+\mathrm{q}_{-}}{2}\right) \exp \left[-\frac{i}{\hbar} \mathrm{p} \bullet\left(\mathrm{q}_{+}-\mathrm{q}_{-}\right)\right]
$$

The phase added in the transform fills in
the area between the polygon and the q-axis.
The full area can then be covered by thin strips.

Stationary phase evaluation, for each centre x_{j}, demands that:

$$
\mathbf{J} \frac{\partial \Delta_{n+1}}{\partial \mathrm{x}_{j}}=\xi_{j}=\frac{t}{n} \mathbf{J} \frac{\partial H}{\partial \mathrm{x}_{j}}=\frac{t}{n} \dot{\mathrm{x}}_{j} .
$$

In short, the trajectory at each centre must be tangent to the respective side of the polygon.

In the limit, $n \rightarrow \infty$, the stationary polygon defines a single classical trajectory, with its endpoints centred at x .

The semiclassical Weyl propagator is then

$$
U(\mathbf{x})=\frac{2^{N}}{|\operatorname{det}(\mathbf{I}+\mathbf{M})|^{1 / 2}} \exp \left[\frac{\mathrm{i}}{\hbar}\left(S(\mathbf{x})+\frac{\hbar \pi \sigma}{2}\right)\right]
$$

if there is a single trajectory with centre \mathbf{x}

The centre action or centre generating function, $S(\mathbf{x})$, specifies a finite evolution through 'Hamilton's equations':

$$
\xi=-\mathbf{J} \frac{\partial S}{\partial \mathbf{x}}, \quad \boldsymbol{x}^{\prime}=\mathbf{x}+\frac{\xi}{2}, \quad x=\mathbf{x}-\frac{\xi}{2} .
$$

The full centre action is $S(\mathbf{x})=s(\mathbf{x})-E t$.

Usual generating functions specify a trajectory by a pair of positions, ($\boldsymbol{q}, \boldsymbol{q}^{\prime}$) while momenta ($\boldsymbol{p}, \boldsymbol{p}$ ') are free.
Here, we have a fixed centre with free chord.

The monodromy matrix, \mathbf{M}, determines the linearized transformation, $\boldsymbol{x} \mapsto \boldsymbol{x}^{\prime}=\mathbf{M} \boldsymbol{x}$ between the tips of the classical trajectory.

3. Compound unitary operators

Multiple evolving correlations among observables:

$$
\mathbf{C}=\left\langle\widehat{A}_{\nu}\left(t_{\nu}\right) \ldots \widehat{A}_{2}\left(t_{2}\right) \widehat{A}_{1}\left(t_{1}\right)\right\rangle=\operatorname{tr} \widehat{A}_{\nu}\left(t_{\nu}\right) \ldots \widehat{A}_{2}\left(t_{2}\right) \widehat{A}_{1}\left(t_{1}\right) \hat{\rho}
$$

where each of the operators $\widehat{A}_{j}\left(t_{j}\right)$ undergoes a Heisenberg evolution:

$$
\widehat{A}_{j}(t)=\widehat{V}_{j}\left(t_{j}\right)^{\dagger} \widehat{A}_{j} \widehat{V}_{j}\left(t_{j}\right)
$$

Define the intermediate steps:

$$
\widehat{U}_{j+1} \equiv \widehat{V}_{j+1}\left(t_{j+1}\right) \widehat{V}_{j}\left(t_{j}\right)^{\dagger} \quad\left(\text { with } \hat{U}_{1} \equiv \widehat{V}_{1} \text { and } \hat{U}_{\nu+1} \equiv \widehat{V}_{\nu}\left(t_{\nu}\right)^{\dagger}\right)
$$

then

$$
\mathbf{C}=\operatorname{tr} \widehat{U}_{\nu+1} \widehat{A}_{\nu} \hat{U}_{\nu} \ldots \widehat{A}_{2} \hat{U}_{2} \widehat{A}_{1} \widehat{U}_{1} \hat{\rho}
$$

including Loschmidt echo, or fidelity.

Thus, the evolving correlation becomes
$\mathbf{C}=\frac{2^{N}}{(\pi \hbar)^{\nu N}} \int d \mathbf{x}_{\nu} \ldots d \mathbf{x}_{2} d \mathbf{x}_{1} d \mathbf{x}_{0} A_{\nu}\left(\mathbf{x}_{\nu}\right) \ldots A_{2}\left(\mathbf{x}_{2}\right) A_{1}\left(\mathbf{x}_{1}\right) W\left(\mathbf{x}_{0}\right)$
$\operatorname{tr} \widehat{\mathbf{U}}\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\nu}\right\}$,
where the kernel for the evolution for the initial correlation is defined as
$\widehat{\mathbf{U}}\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\nu}\right\} \equiv \widehat{U}_{\nu+1} \hat{R}_{\mathbf{x}_{\nu}} \widehat{U}_{\nu} \ldots \hat{R}_{\mathbf{x}_{1}} \widehat{U}_{1} \hat{R}_{\mathbf{x}_{0}}$.

But the reflection operators are also unitary, so that this sequence can be considered as a single compound unitary operator. It defines a quantum evolution corresponding to a classical compound canonical transformation.

Assume that the compound Weyl propagator, $\mathbf{U}(\mathrm{x})$, shares the standard semiclassical form as each individualpropagator, $U_{v}\left(\mathrm{x}_{v}{ }^{\prime}\right)$.

That is, assume that the compound classical action is

$$
\mathbf{S}(\mathbf{x})=\Delta_{2 \nu+3}+S_{1}\left(\mathbf{x}_{1}^{\prime}\right)+\ldots+S_{\nu+1}\left(\mathbf{x}_{\nu+1}^{\prime}\right)
$$

Likewise, the amplitude of the compound propagator is determined by the monodromy matrix of the full motion: The product of the linearised transformation for each segment:

$$
\mathbf{M}=[-\mathbf{I}] \cdot \underbrace{\mathbf{M}_{1}}_{\text {reflections }} \cdot[-\mathbf{I}] \cdot{\underset{\sim}{\text { evolutions }}}_{\mathbf{M}_{2} \cdot \ldots[-\mathbf{I}] \cdot \mathbf{M}_{\nu+1}}^{\text {ever }}
$$

The monodromy matrices for the reflections are independent of the position of their reflection centres, but \mathbf{M} and $S(\mathrm{x})$ depend on all the centres $\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\nu}\right\}$, that parametrize a family of canonical transformations.

Now one requires $\operatorname{tr} \hat{\mathbf{U}}$, but the trace of any operator equals the phase space integral of its Weyl representation:

$$
\operatorname{tr} \widehat{U}=\int \frac{d \mathbf{x}}{(2 \pi \hbar)^{N}} U(\mathbf{x})
$$

The only explicit dependence of $\mathbf{U}(\mathrm{x})$ on x lies in $\Delta_{2 n+3}=\mathrm{x} \wedge \boldsymbol{\xi}+C$ Since the chord centred on \mathbf{x} depends only on the other centres,

$$
\frac{\boldsymbol{\xi}}{2}=\left(\mathrm{x}^{\prime}{ }_{1}-\mathrm{x}_{0}\right)+\left(\mathrm{x}^{\prime}{ }_{2}-\mathrm{x}_{1}\right)+\ldots+\left(\mathrm{x}_{\nu+1}^{\prime}-\mathrm{x}_{\nu}\right)
$$

then

$$
\int \frac{d \mathbf{x}}{(2 \pi \hbar)^{N}} \exp \left[\frac{i \Delta_{2 \nu+3}\left(\mathbf{x}, \mathbf{x}_{j}, \mathbf{x}_{j}^{\prime}\right)}{\hbar}\right]=\exp \left[\frac{i \Delta_{2 \nu+2}\left(\mathbf{x}_{j}, \mathbf{x}_{j}^{\prime}\right)}{\hbar}\right] \delta(\boldsymbol{\xi})
$$

But if the chord centred on x is zero, the selected trajectory is periodic!

Then stationary phase evaluation:

$$
\operatorname{tr} \widehat{\mathbf{U}}_{p} \approx \frac{2^{N}}{|\operatorname{det}(\mathbf{I}-\mathbf{M})|^{1 / 2}} \exp \left[\frac{i}{\hbar}\left(\mathbf{S}(\mathbf{x})+\frac{\hbar \pi \sigma^{\prime}}{4}\right)\right]
$$

4. Initial value representation

The appropriate trajectories for a semiclassical propagator are determined by boundary conditions. If the finite evoution is specified by Hamilton's differential equations, there is a practical root search problem to find the trajectory.

Also, in the case of the trace, one must search for the periodic trajectories.

A further problem concerns caustics:

There may be several trajectories with the same centre:

> A pair of chords coalesces for a centre, \mathbf{x}, on a centre caustic.

The caustic singularities of the Weyl propagator are loci of centres, at which an eigenvalue of $\mathbf{M}, \lambda=-1$.

In the case of the trace of the propagator, the caustics arise at periodic orbit bifurcations:
They occur along codimension-1 surfaces in the parameter space $\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\nu}\right\}$

Let us then reinterpret $\operatorname{tr} \hat{\mathbf{U}}$ as the Weyl representation of a reduced compound unitary operator:
$\operatorname{tr} \widehat{\mathbf{U}}\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{\nu}\right\}=\operatorname{tr} \widehat{U}_{\nu+1} \hat{R}_{\mathbf{x}_{\nu}} \widehat{U}_{\nu} \ldots \hat{R}_{\mathbf{x}_{1}} \hat{U}_{1} \hat{R}_{\mathbf{x}_{0}}=\mathbf{U}^{\prime}\left(\mathbf{x}_{0}\right)$
that is,

$$
\widehat{\mathrm{U}}^{\prime} \equiv \widehat{U}_{\nu+1} \hat{R}_{\mathbf{x}_{\nu}} \widehat{U}_{\nu} \ldots \hat{R}_{\mathbf{x}_{1}} \widehat{U}_{1}
$$

This has one less reflection than $\hat{\mathbf{U}}$, but it has an analogous semiclassical approximation:

The same figure as before is now interpreted as an open polygonal line, going from x_{0}^{-}to x_{0}^{+}.

Each branch of the generating function $S\left(\mathrm{x}_{0}\right)$ is constructed from a compound trajectory that satisfies $\mathrm{x}_{0}+\mathrm{x}_{0}^{+}=2 \mathrm{x}_{0}$. But there is still a root search and caustics...

The initial value representation (IVR) now results from the change of variable in the integral for the correlation

$$
\begin{array}{r}
\mathbf{C}=\frac{2^{N}}{(\pi \hbar)^{\nu N}} \int d \mathbf{x}_{\nu} \ldots d \mathbf{x}_{2} d \mathbf{x}_{1} d \mathbf{x}_{0} A_{\nu}\left(\mathbf{x}_{\nu}\right) \ldots A_{2}\left(\mathbf{x}_{2}\right) A_{1}\left(\mathbf{x}_{1}\right) W\left(\mathbf{x}_{0}\right) \\
\operatorname{tr} \widehat{\mathbf{U}}\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\nu}\right\}
\end{array}
$$

from the trajectory midpoint, x_{0} to the initial point, $x_{0}{ }^{-}$. Thus, one changes the integration variable to the initial value of the classical trajectory: The Jacobian is

$$
\operatorname{det}\left(\frac{\partial \mathbf{x}_{0}}{\partial \mathrm{x}_{0}^{-}}\right)=\operatorname{det}\left(\frac{\mathbf{I}+\mathbf{M}}{2}\right)
$$

Thus, the semiclassical approximation for the evolving correlation becomes:

$$
\begin{aligned}
& \mathbf{C}=\frac{2^{N}}{(\pi \hbar)^{\nu N}} \int d \mathbf{x}_{\nu} \ldots d \mathbf{x}_{1} d x_{0}^{-} A_{\nu}\left(\mathbf{x}_{\nu}\right) \ldots A_{1}\left(\mathbf{x}_{1}\right) W\left(\mathbf{x}_{0}\left(x_{0}^{-}\right)\right)\left|\mathbf{I}+\mathbf{M}^{\prime}\right|^{1 / 2} \\
& \exp \left[\frac{i}{\hbar}\left(\mathbf{S}^{\prime}\left(\mathbf{x}_{0}\left(x_{0}^{-}\right)\right)+\hbar \pi \sigma\right)\right]
\end{aligned}
$$

where now all classical variables are determined by the initial value of the compound trajectory: x_{0}.

No more root search and no more caustics!

5. An example: IVR for the quantum fidelity

The Loschmidt echo for different forward and back evolutions,

$$
L(t)=\langle\psi|\left\langle\left.\exp \left(\frac{i}{\hbar} \hat{H}_{+} t\right) \exp \left(-\frac{i}{\hbar} \hat{H}_{-} t\right) \right\rvert\, \psi\right\rangle
$$

can be expressed in terms of an echo operator,

$$
\widehat{I}_{L}(t)=\widehat{U}_{+}(t)^{\dagger} \widehat{I}^{I} \widehat{U}_{-}(t)=\exp \left(\frac{\mathrm{i}}{\hbar} \widehat{H}_{+} t\right) \widehat{I} \exp \left(-\frac{\mathrm{i}}{\hbar} \widehat{H}_{-} t\right),
$$

a simple compound operator, with $\hat{I}=\hat{T}_{0}$, instead of \hat{R}_{x} :

$$
L(t)=\operatorname{tr}\left[\widehat{\rho} \widehat{I}_{L}(t)\right]=\int \frac{\mathrm{d} \mathbf{x}}{(\pi \hbar)^{N}} W(\mathbf{x}) I_{L}(\mathbf{x}, t) .
$$

Thus, we obtain the IVR:

$$
L(t)=\int \frac{\mathrm{d} \boldsymbol{x}^{-}}{(2 \pi \hbar)^{N}} \sqrt{\left|\operatorname{det}\left(\mathbf{I}+\left[\mathbf{M}_{+}\left(\mathbf{x}^{+}\right)\right]^{-1} \mathbf{M}_{-}\left(\mathbf{x}^{-}\right)\right)\right|}
$$

$$
\times \exp \left\{\frac{\mathrm{i}}{\hbar}\left[S_{0}\left(\frac{\boldsymbol{x}^{+}+\boldsymbol{x}^{-}}{2}\right)+\frac{\hbar \sigma \pi}{2}\right]\right\} W\left(\frac{\boldsymbol{x}^{+}+\boldsymbol{x}^{-}}{2}\right) .
$$

This is exact for a pair of harmonic oscilators.

Vaniceck's dephasing representation results by approximating the action within classical perturbation theory as the time integral of $\delta H=H^{+}(x)-H^{-}(x)$ along a single trajectory:

$$
L_{\mathrm{DR}}(t)=\int d x_{0} W\left(x_{0}\right) \exp \left(-\frac{i}{\hbar} \int_{0}^{t} \delta H\left(\mathbf{x}\left(\tau ; x_{0}\right)\right) d \tau\right)
$$

5. Discussion:

The exchange of focus from the individual semiclassical propagator to complete evolving correlations pays off! Some care needs still to be taken:
i. General rules for phase evaluation through caustics: These become zeroes of the integrand, leading to sign changes:
i. Numerical computations for nonlinear evolutions (Comparison with Hermann-Kluk computations).
iii. Adaptation to nonunitary (Markovian) evolution.
iv. Semiclassical evaluation for reduced density operators.

- Phase space path integral for the Weyl propagator, OA 1992, Proc. R. Soc.A 439,139-153
- The Weyl Representation in classical and quantum mechanics

OA 1998, Phys. Reports 295, $265-344$

- The Weyl representation on the torus

Rivas AMF and OA 1999, Ann. Phys. NY 276, 223-256

- Entanglement in phase space

OA 2009, Lecture Notes in Physics 768, 159-221

- Semiclassical evolution of dissipative markovian systems OA, Rios PM and Brodier O 2009, J. Phys. A 42065306 (29p)
-Metaplectic sheets and caustic traversals in the Weyl representation OA and Ingold G-L 2014, J. Phys. A 47, 105303
- Semiclassical evoluion of correlations between observables OA and Brodier O 2016, J. Phys. A 49, 185302 (19pp)
- Representation of superoperators in double phase space

Saraceno M and OA 2016, J. Phys. A 49, 145302 (23pp)

