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When Dutch parents divorce, Dutch law dictates that the parental contributions to cover the financial needs of

the children have to be proportionally fair. This rule is clear when parents only have common children. However,

cases can be considerably more complicated, for example when parents have financial responsibilities to children

from previous marriages. We show that, mathematically, this settlement problem can be modelled as a bipartite

rationing problem for which a unique global proportionally fair solution exists. Moreover, we develop two efficient

algorithms for obtaining this proportionally fair solution, and we show numerically that both algorithms are

considerably faster than standard convex optimization techniques. The first algorithm is a novel tailor-made

fixed-point iteration algorithm, whereas the second algorithm only iteratively applies simple lawsuits involving

a single child and its parents. The inspiration for this latter algorithm comes from our main convergence proof

in which we show that iteratively applying settlements on smaller subnetworks eventually leads to the same

settlement on the network as a whole. This has significant societal importance since in practice lawsuits are

often only held between two or a few parents. Moreover, our iterative algorithm is easy to understand, also

by parents, legal counselors, and judges, which is crucial for its acceptance in practice. Finally, as the method

provides a unique solution to any dispute, it removes the legal inequality perceived by parents. Consequently, it

may considerably reduce the workload of courts because parents and lawyers can compute the proportionally fair

parental contributions before bringing their case to court.

Key words : Divorced parents problem, Proportionally fair solutions, Bipartite rationing problem

1. Introduction

When two Dutch parents divorce and have common children, they both have a financial responsi-

bility to cover their children’s monthly needs, such as housing and school costs. In general, these

financial needs are distributed to the parents in proportion to their financial capacity. This rule is

clear in practice when parents have just one child, or only common children. However, cases can be

considerably more complicated, in particular when the divorcing parents have financial obligations

to children of previous marriages, or remarry other parents who in turn have children.
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When the divorcing parents disagree on how to cover the children’s needs, they can bring their

case to court. By Dutch law, the distribution of the parental contributions should satisfy, roughly

speaking, two properties: (i) the children’s needs must be met to the maximum extent possible,

and (ii), when there is financial capacity left, the parental contributions should be proportional to

their individual financial capacities. Henceforth, we refer to the problem of determining parental

contributions satisfying (i) and (ii) as the divorced-parents problem (DPP).

The DPP can be represented as a rationing problem on a bipartite graph in which nodes represent

the parents and the children, and the directed arcs from parent nodes to child nodes indicate for

which children each parent is financially responsible. In particular, the financial capacities of the

parents represent the scarce resources that need to be divided over several claimants, in this case

the children, to meet their needs. Applying results from Moulin and Sethuraman (2013) for such

rationing problems to the DPP, we conclude that a unique solution exists and can be obtained using

standard convex optimization algorithms, see, e.g., Boyd and Vandenberghe (2004). However, there

are three practical reasons why this is insufficient for solving the DPP in Dutch courts.

The first practical problem is operational. Typically, only two or a few parents are involved in a

lawsuit, even if the actual parent-child network is considerably larger, see Jonker et al. (2020) for

a number of examples. A judge may take this larger network into account when determining the

parental contributions, but practical reasons compel the judge to constrain the network to a man-

ageable size. As a consequence, the final court rulings apply only to the parents directly involved in

the lawsuit, but do not extend to the full parent-child network. Therefore, a lawsuit, which reduces

the unfairness in one part of the network, can increase the unfairness in another part of the net-

work. This may lead to a second lawsuit, which may propagate a third one, leading to a sequence

of lawsuits. From a mathematical point of view it is pleasing, and from a societal point of view it

is important, that the parental contributions converge after such a sequence of lawsuits on sub-

networks of the larger parent-child network, and that these contributions converge to the unique

solution of the DPP on the complete parent-child network.

The second practical problem has a psychological background, and is related to the standard

convex optimization algorithms to obtain the solution to a complete parent-child network. These

algorithms are not well understood by legal counselors, parents, and judges, and thus mainly per-

ceived as a black box. This significantly hampers the acceptance of the unique solution to the DPP

that these algorithms provide. Particularly, when the parent-child network underlying a lawsuit is

complex and large.

The third practical problem is computational. Many individual parents, mediators, and lawyers,

do not have access to or are unable to use large convex optimization toolboxes, meaning that they

cannot compute the solution before they bring their dispute to court. With access to a numerically
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fast and easy-to-understand exact solution method, however, that can easily be run on, e.g., a mobile

phone, many of these lawsuits can be avoided, reducing the workload on court houses. Moreover,

when it does come to a lawsuit, new information may become available during an actual trial, and

with a fast and simple solution method the impact of this new information on the solution can be

determined real-time.

In this paper we provide a solution method that addresses all these three practical problems at

the same time. In particular,

• We prove that under mild conditions the parental contributions corresponding to any sequence

of lawsuits for subnetworks converges to the unique solution of the DPP on the complete parent-child

network.

• We develop two efficient exact solution methods for the DPP. The first is a novel tailor-made

fixed-point iteration algorithm. The second is based on our convergence result, and is particularly

easy to understand since it only requires iteratively applying simple lawsuits on subnetworks involv-

ing a single child and its parents.

• We show using numerical experiments that our methods are faster than standard convex opti-

mization techniques. Moreover, we show that our methods find the unique proportionally fair solu-

tion to the bipartite rationing problem for any network of practical size in less than a second, even

on a mobile phone. Additionally, it only requires a few lines of code to implement the methods.

We note that there exist multiple notions of proportionally fairness in the literature. While here

we focus on the one in the context of the bipartite rationing problem (Moulin and Sethuraman 2013),

this concept is also used in bandwidth sharing of the Internet, c.f., Kelly et al. (1998), Walton (2009),

Wang et al. (2022). However, the concept of fairness that they use is not the same as ours.

The remainder of this paper is organized as follows. In Section 2 we provide further background

and motivation for the practical aspects of the divorced-parents problem. In Section 3 we mathemat-

ically describe the DPP, and in Section 4 we develop a fixed-point iteration algorithm for obtaining

the proportionally fair solution to the DPP. Next, in Section 5 we provide our convergence results

for sequences of lawsuits on subnetworks of the parent-child network, in Section 6 we present our

numerical results, and we end with a discussion in Section 7.

2. Legal and practical background of the DPP

A lawsuit about child maintenance involves, basically, three steps. First, a judge formalizes which

(step-)parent is financially responsible for which child. Second, the judge determines the financial

needs of each child and the financial capacity of each parent that can be used to cover the needs.

The rules used in this step are partly based on case law and partly on specific circumstances such as
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income, cost of housing and schooling. The third step is to settle the contributions of the parents to

the children, based on this information.

While many different solutions are possible, rulings of the Dutch Supreme Court and case law,

cf., Jonker et al. (2020), dictate that the division should be proportionally fair, that is, the parental

contributions should satisfy the following rules,

1. Parents only contribute to children for whom they are directly financially responsible.

2. Capacity should be used to cover the needs to the maximum extent possible. In other words, a

child cannot have a shortage unless both its parents already used their full capacity.

3. Arbitrary circumstances should not have an impact on the division. That is, children from for-

mer marriages should not receive financial preference over children from a later marriage.

4. When the capacities cover the needs of a child, i.e., there is an overage, the contribution of each

parent should be proportional to the parent’s capacity.

5. When the capacities do not suffice to cover the needs, i.e., there is a shortage, and the siblings

have different needs, the available capacity should be divided proportional to the need of each

child.

We illustrate the last two rules with two simple examples for which the unique proportionally fair

solution can be determined analytically.

EXAMPLE 1. Consider a parent-child network with two parents, A and B, and one common child,

AB. Let dA and dB denote the financial capacities of the parents and bAB the need of the child. Then,

in the proportionally fair solution the contributions, xA,AB and xB,AB, of parents A and B to child AB

are given by,

xA,AB = dA min
{

bAB

dA +dB
,1

}
, and xB,AB = dB min

{
bAB

dA +dB
,1

}
. (1)

That is, if the need bAB of child AB exceeds the financial capacities dA + dB of the parents, i.e., if

bAB > dA +dB, then xA,AB = dA and xB,AB = dB, meaning that both parents spend their full capacity.

On the other hand, if bAB ≤ dA + dB, then both parents spend the same proportion bAB
dA+dB

of their

financial capacity on child AB. □

EXAMPLE 2. For a parent-child network with two children, AB and BC, and one common parent,

B, with financial needs, bAB and bBC, and capacity, dB, respectively, the proportionally fair contribu-

tions, xB,AB and xB,BC, of parent B to children AB and BC is given by

xB,AB = bAB min
{

dB

bAB +bBC
,1

}
, and xB,BC = bB min

{
dB

bAB +bBC
,1

}
. (2)

Note that the children receive exactly their needs when dB ≥ bAB + bBC, i.e., when the financial

capacity of parent B exceeds the combined needs of both children AB and BC. Otherwise, both

children receive the same proportion dB
bAB+bBC

of their needs. □
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The cases that are brought to court are typically much more complicated than in Examples 1 and 2.

The lawsuit described in Example 3 below based on an actual court case—in the bibliography indi-

cated as Case:767 (2016)—illustrates the complexities that occur in practice.

EXAMPLE 3. Parents A and B have a case about the contribution to their common (three) children

AB, see Fig. 1 for an overview of the topology of the parent-child network. At the date of the case, A

is living together with C with common child AC. Parent C has also another child CD from a former

marriage with D. Parent B, the other parent involved in the case, is remarried to E, who already

had a child EF with F; F is not included in the description of the lawsuit for reasons not mentioned

in the lawsuit. Parent B accepts responsibility for child EF while E accepts responsibility for AB.

A B EC

AC AB EFCD

D

Figure 1 The parent-child network of the lawsuit described in Example 3. Parents are represented as squares at the

top; children as circles at the bottom.

Table 1 The outcome of the actual court case described in Example 3. The bold numbers in the matrix indicate the

parental contributions in euros per month as determined by court order; the proportionally fair contributions are given in

parentheses. On top of the matrix are the financial needs of the children, to the left the financial capacities of the parents,

and to the right the overages of the parents, i.e., the financial capacity they have left after paying the contributions to

their children.

Financial needs children
AB AC CD EF

Capacities parents 1563 728 790 520 Overages
A 3795 842 (817) 336 (545) - - 2617 (2433)
B 2545 550 (545) - - 285 (380) 1710 (1620)
C 1374 - 392 (183) 527 (372) - 455 (819)
D 1355 - - 263 (418) - 1092 (937)
E 939 171 (201) - - 235 (140) 533 (598)

Table 1 shows, besides the financial capacities of the parents and the financial needs of the chil-

dren, the parental contributions as ruled by the court and the proportionally fair parental contri-

butions (in parentheses). A direct comparison of both outcomes shows striking differences. In par-

ticular, parent C needs to contribute 364 euros per month more than what is proportionally fair,
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whereas parents A and D need to contribute, respectively, 184 and 175 euros per month less than in

the proportionally fair solution. □

From Example 3 and other examples investigated by Jonker et al. (2020) it is apparent that judges

attempt to find proportionally fair solutions consistent with the rulings of the Dutch Supreme Court,

but in practice accept (very rough) approximations due to the complexity of the computations. This

has numerous negative consequences. First, for more or less similar situations, the parental contri-

butions as ruled by different courts can differ significantly, thereby leading to legal inequality for

parents. Second, when ex-spouses perceive the settlements as ‘unfair’ or ‘arbitrary’, they can (and

sometimes do) start new costly and lengthy court cases. Formulated in plain human terms: there is

much grief, frustration, and anger involved in this process. Third, the computation by hand or Excel

of even an approximately fair distribution is time-consuming, and hence places a considerable bur-

den on the capacity of the courts. As a further consequence of the lengthy procedures, contributions

of the parents are not updated even when the network changes considerably, for instance due to new

born children. In summary, there is a clear need for a fast and widely accepted exact solution method

to compute the proportionally fair division satisfying the rulings of the Dutch Supreme Court.

In the remainder of the paper we concentrate on the mathematical aspects of the DPP, and meth-

ods to find the proportionally fair solution. Even though we present our results in terms of the DPP,

we note that these apply to the general proportionally fair bipartite rationing problem.

3. The divorced-parents problem

Let N = (V ,E ,d,b) denote a bipartite parent-child network with V = P ∪C such that each node

i ∈ P corresponds to a parent and every node j ∈ C to a child. The network N has a directed arc

(i, j) ∈ E ⊂ P ×C from node i ∈ P to node j ∈ C if and only if parent i is financially responsible for

child j. Parents have financial capacities d i > 0, i ∈ P , to cover the financial needs b j > 0, j ∈ C , of

the children. We assume that each child j ∈ C has at least two parents, but can have more in case

of step-parents as in Example 3. Finally, we assume that the network N consists of one component,

for otherwise we study each component in separation. We will call such a network N connected.

For every arc (i, j) ∈ E , let xi j ∈R+ denote the contribution that parent i pays to child j. Define the

set of feasible parental contributions x as

X :=
{

x ∈R|E |
+ :

∑
j∈C (i)

xi j ≤ d i, ∀ i ∈P ;
∑

i∈P ( j)
xi j ≤ b j ∀ j ∈C

}
,

where R+ = [0,∞)], C (i) := { j ∈ C : (i, j) ∈ E } represents the children of parent i ∈ P and P ( j) := {i ∈
P : (i, j) ∈ E } the parents of child j ∈ C . Thus, x ∈ X if and only if the total parental contribution of

each parent i ∈ P does not exceed the financial capacity d i, and each child j ∈ C does not receive
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more than the financial needs b j. Observe, for the moment, that we do not require that the needs of

the children are exactly met since this may be infeasible, for example if
∑

i∈P d i <∑
j∈C b j.

For every parental contribution x ∈ X we define the overage Oi(x) of parent i ∈P as

Oi(x) := d i −
∑

j∈C (i)
xi j.

That is, the overage Oi(x) of parent i is how much financial capacity parent i has left after paying xi j

to children j ∈ C (i). Observe that x ∈ X implies that Oi(x) ≥ 0. Analogously, we define the shortage

S j(x) of child j ∈C as

S j(x) := b j −
∑

i∈P ( j)
xi j,

where S j(x)≥ 0 for all j ∈C if x ∈ X .

Clearly, the rulings of the Dutch Supreme Court described in Section 2 imply that a proportionally

fair solution x̄ ∈ X should minimize the total shortages of the children, that is,

x̄ ∈ argmin
{ ∑

j∈C

S j(x) : x ∈ X
}
. (3)

This problem can be interpreted as a max-flow problem where the parental contributions x represent

the flow in the network, the parent nodes P represent the supply nodes with supply d i, i ∈ P , and

the child nodes C represent the demand nodes with demand b j, j ∈C .

If the max-flow problem only has a single optimal solution x̄ for which the shortages of all children

and overage of all parents are zero, i.e., S j(x̄) = 0 for all j ∈ C and Oi(x̄) = 0 for all i ∈ P , then we

call the network tight. In general, however, a network is not tight and can be divided into three

subnetworks, see also, Ahuja et al. (1993), Bochet et al. (2012) and Moulin and Sethuraman (2013).

1) An overage subnetwork that allows no shortages and the number of parents with an overage is

maximal.

2) A shortage subnetwork, which is essentially the reverse of an overage network: there are no

overages and the number of children with a shortage is maximal.

3) A tight subnetwork, consisting of the parents and children not in the overage or shortage sub-

networks.

In the remainder of this paper, we focus on overage networks only. Shortage networks can be solved

by the same principles by reversing the flows, and tight networks can be solved by simply solving

the max-flow problem in Eq. (3).

DEFINITION 1. A parent-child network N is called an overage network if for every subset C ′ ⊂C of

children, it holds that ∑
i∈P (C ′)

d i >
∑
j∈C ′

b j.

Here, P (C ′) := {i ∈P : (i, j) ∈ E for some j ∈C ′}, i.e., P (C ′) is the set of parents with financial respon-

sibility for at least one child in C ′.
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Within an overage network, we can sensibly introduce the notion of ‘budget’ Bi j(x) which is the

capacity some parent i ∈P has available for child j ∈C (i) after meeting the obligations to all other

children C (i)\{ j}.

DEFINITION 2. Given a set of contributions x ∈ X , the budget Bi j(x) of parent i ∈P for child j ∈C (i)

is defined as

Bi j(x) := d i −
∑

k∈C (i)\{ j}
xik =Oi(x)+ xi j.

Supposing that the contributions x are such that Bi j(x) > 0 for all i ∈ P , j ∈ C (i), the overages

should be divided proportionally fair.

DEFINITION 3. A set of contributions x is feasible when x ∈ X := {x ∈ X :
∑

i∈P ( j) xi j = b j, ∀ j ∈ C }.

A set x̄ is proportionally fair when x̄ is feasible and such that for every child j ∈ C , there exists a

constant δ j > 0 such that x̄i j/Bi j(x̄)= δ j for all i ∈P j.

Thus, in a proportionally fair solution x̄ all needs of the children are satisfied, and if parents i

and k have a common child j, then the ratio between the contributions and budgets for both parents

are equal, i.e., x̄i j/Bi j(x̄) = x̄k j/Bk j(x̄) = δ j. For instance, for the proportionally fair solution in Table 1

of Example 3 we have that δAB = 0.25,δAC = 0.18,δCD = 0.31, and δEF = 0.19.

It turns out that this proportionality condition has two equivalent characterizations.

PROPOSITION 1. Let N = (V ,E ,d,b) denote a parent-child overage network. Let x ∈ X . Then, the

following three proportionality conditions on x are equivalent.

(i) For every child j ∈C , there exists a constant δ j > 0 such that

xi j

Bi j(x)
= δ j, for all i ∈P j.

(ii) For every child j ∈C , there exists a constant γ j > 0 such that

Oi(x)
Bi j(x)

= γ j, for all i ∈P j.

(iii) For every child j ∈C , there exists a constant β j > 0 such that

xi j

Oi(x)
=β j, for all i ∈P j.

Proof. We show that (i)–(iii) are equivalent by rewriting Oi (x)
Bi j (x) , j ∈ C , i ∈ P ( j). Using the defini-

tions of overage and budget, it follows that Bi j(x)=Oi(x)+ xi j, and thus

Oi(x)
Bi j(x)

= Oi(x)
Oi(x)+ xi j

= Oi(x)+ xi j − xi j

Oi(x)+ xi j
= 1− xi j

Oi(x)+ xi j
= 1− xi j

Bi j(x)
.
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Hence, if Oi (x)
Bi j (x) is constant for all i ∈ P ( j), then so is xi j

Bi j (x) for all i ∈ P ( j), and thus (i) and (ii) are

equivalent. Note that Oi(x) > 0, for otherwise, parent i has no overage, and hence would be in the

tight subnetwork. The equivalence with (iii) follows from the fact that

Bi j(x)
xi j

= Oi(x)+ xi j

xi j
= 1+ Oi(x)

xi j
,

and thus xi j
Oi (x) is constant for all i ∈P ( j), if xi j

Bi j (x) is. Finally, note that by assumption all denominators

of the quotients in this proposition are strictly positive and thus the quotients are well-defined. □
Proposition 1 shows that in a proportionally fair solution there is not only proportionality between

parental contributions and budgets, but also between overages and budgets, and between contribu-

tions and overages. Moulin and Sethuraman (2013) show that such a proportionally fair solution

exists and is unique. Therefore, we refer to x̄(N ) as the proportionally fair solution for network N ,

and we omit the dependence on N if it is clear from the context.

4. Computation of the proportionally fair solution

In this section we provide our first algorithm to compute the proportionally fair solution x̄ of a

parent-child overage network N . In such a proportionally fair solution x̄, by Proposition 1, for each

child j ∈ C the parental contributions x̄i j are proportional to the overages Oi(x̄) of the parents i ∈
P ( j). As a result, the parental contributions x̄ are uniquely determined by the overages O(x̄).

LEMMA 1. In an overage parent-child network N , any proportionally fair solution x̄ satisfies

x̄i j = Oi(x̄)∑
k∈P ( j) Ok(x̄)

b j, ∀ j ∈C , i ∈P ( j). (4)

Proof. Let x̄ be a proportionally fair solution and let j ∈ C be given. By Proposition 1 there

exists a constant β j > 0 such that x̄i j = β jOi(x̄) for all i ∈ P ( j). Moreover, since x̄ ∈ X , it holds that∑
i∈P ( j) x̄i j = b j for all j ∈C , and thus β j

∑
i∈P ( j) Oi(x̄)= b j, from which it follows that

β j =
b j∑

i∈P ( j) Oi(x̄)
, j ∈C .

The desired result follows from substituting this expression in x̄i j =β jOi(x̄). □
Lemma 1 shows that to determine a proportionally fair solution x̄ in an overage network it suffices

to determine the overages O(x̄) of the parents. Implicitly, the parental contributions x̄ are completely

determined by O(x̄). The question that remains is whether we can derive a condition on the overages

O(x̄) such that Oi(x̄)+∑
j∈C (i) x̄i j = d i holds for all i ∈ P if x̄i j is determined by (4) in Lemma 1.

Lemma 2 below provides such a condition.
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LEMMA 2. In an overage network, any proportionally fair solution x̄ satisfies

Oi(x̄)= d i

(
1+ ∑

j∈C (i)

b j∑
k∈P ( j) Ok(x̄)

)−1
, ∀ i ∈P . (5)

Proof. By definition, Oi(x̄) = d i −∑
j∈C (i) x̄i j for all i ∈ P . Substituting the expression for x̄i j of

Lemma 1 yields

d i =Oi(x)+ ∑
j∈C (i)

b j
Oi(x̄)∑

k∈P ( j) Ok(x̄)
=Oi(x̄)

(
1+ ∑

j∈C (i)

b j∑
k∈P (k) Ok(x̄)

)
,

and the desired result follows from rewriting this expression. □
In Lemma 2, the factor

(
1+∑

j∈C (i)
b j∑

k∈P ( j) Ok(x̄)

)−1
∈ (0,1) represents the fraction of parent i’s finan-

cial capacity d i that will be left after the parental contributions x̄i j to children j ∈ C (i) are paid.

Intuitively, if

Oi(x̄)< d i

(
1+ ∑

j∈C (i)

b j∑
k∈P ( j) Ok(x̄)

)−1
,

then the current overage Oi(x̄) is too low for a proportionally fair solution, which has to be resolved

by decreasing the parental contributions of parent i and increasing those of the other parents.

Based on the condition in Lemma 2, we consider the following transformation function T. Let

R++ = (0,∞).

DEFINITION 4. We define the transformation function T : R|P |
++ → R

|P |
++ as T(y) = (T1(y), . . . ,T|P |(y)),

where for every i ∈P ,

Ti(y)= d i

(
1+ ∑

j∈C (i)

b j∑
k∈P ( j) yk

)−1
, y ∈R|P |

++ .

The reason for defining this transformation function T is that the overages O(x̄) in a proportionally

fair solution x̄ are a fixed point of T. That is, for ȳ = O(x̄), it holds that ȳ = T( ȳ). We will show in

Theorem 1 that O(x̄) can be obtained by iteratively applying T. First, however, we discuss properties

of the transformation function T. For this, we write y′ < y if and only if y′
i < yi for all components

i ∈P , and likewise, y′ ≤ y if and only if y′
i ≤ yi for all i ∈P .

PROPOSITION 2. Consider the transformation function T from Definition 4. Then,

(i) for every y ∈R|P |
++ , we have T(y) ∈R|P |

++ .

(ii) the function T is continuous.

(iii) for every y, y′ ∈R|P |
++ , if y≤ y′, then T(y)≤ T(y′), and if y< y′, then T(y)< T(y′).
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Proof. Trivial. □
Note that Proposition 2 (i) and (iii) imply that if y ∈ R|P |

++ and T(y) < y, then T(T(y)) < T(y) < y.

That is, under the starting condition T(y0)< y0, iteratively applying T yields a decreasing sequence

that is converging because the sequence is bounded from below by zero. This observation motivates

our fixed-point iteration algorithm: we define y0 := d and yn := T(yn−1) for n ∈N. We note that y0 = d

corresponds to a situation in which the overages of all parents equal their financial capacities, and

thus the children receive no contributions. Obviously, this does not correspond to a proportionally

fair solution. However, by iteratively applying the transformation function T, the overages of the

parents will iteratively decrease, and for the fixed point ȳ = limn→∞ yn the financial needs of the

children will be exactly satisfied.

THEOREM 1. In a parent-child overage network, let the sequence {yn}∞n=0 ⊂R|P|
++ be defined as

yn := T(yn−1), n ∈N,

with y0 := d and the transformation function T as defined in Definition 4. Then, yn converges to

a fixed point ȳ of T, and the proportionally fair solution x̄ to the divorced-parents problem can be

computed by

x̄i j = ȳi∑
k∈P ( j) ȳk

b j, ∀ j ∈C , i ∈P ( j). (6)

Proof. Let y0 := d, and define yn := T(yn−1) for n ∈N. We will prove by induction that yn < yn−1 for

all n ∈N. For n = 1, this is true since for every i ∈P ,

y1
i = Ti(y0)= d i

(
1+ ∑

j∈C (i)

b j∑
k∈P ( j) y0

k

)−1
< d i = y0

i .

For arbitrary n ∈N, we have yn+1 = T(yn) < T(yn−1) = yn, since by the induction hypothesis yn < yn−1

and thus T(yn) < T(yn−1) by Proposition 2 (iii). Hence, the sequence {yn}∞n=0 represents a sequence of

vectors yn that are monotonically decreasing with lower bound zero because of Proposition 2 (i). It

follows that yn converges to a limit ȳ= limn→∞ yn. Since the transformation function T is continuous,

see Proposition 2 (ii), this limit ȳ is a fixed point of T, and thus Eq. (5) in Lemma 2 is satisfied by

O(x̄) = ȳ. It follows directly, from Lemma 1 that Eq. (6) yields a proportionally fair solution x̄ to the

divorced parents problem. □
Based on Theorem 1 we define the following fixed point iteration algorithm (FPA) for computing

the proportionally fair solution.

Algorithm 1: Fixed point iteration algorithm (FPA).

1. Initialization. Let overage parent-child network N = (V ,E ,d,b) and initial parental overages

y0 = d be given. Let ϵ> 0 denote the tolerance level, and set n := 0.
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2. Iteration. Use the transformation function T from Definition 4 to update the parental over-

ages. That is, for every parent i ∈P , set

yn+1
i := d i

(
1+ ∑

j∈C (i)

b j∑
k∈P ( j) yn

k

)−1
.

Update the iteration counter, set n := n+1.

3. Termination. Stop if
∑
i∈P

yn
i /(

∑
i∈P

d i −
∑
j∈C

b j) ≤ 1+ ϵ, and use Eq. (6) to compute the proportional

fair solution:

x̄n
i j =

yn
i∑

k∈P ( j) yn
k

b j, ∀ j ∈C , i ∈P ( j). (7)

In the FPA of Algorithm 1, the y-values, representing parental overages, decrease monotonically, and

thus the corresponding parental contributions increase. Eventually, these parental contributions

cover the needs of all children in the network. This is what the stopping criterion in Algorithm 1

guarantees.

REMARK 1. The smaller the threshold level ϵ in Algorithm 1, the better we expect x̄n from Algo-

rithm 1 to approximate x̄. If ϵ is too large, however, it is possible that x̄n ∉ X . In that case, the

tolerance level ϵ should be decreased and more iterations need to be carried out.

5. Convergence in case of iterative lawsuits

In the previous section we have developed a fixed-point iteration algorithm for computing the propor-

tionally fair solution x̄ of a parent-child network N . Since this solution x̄ is unique it allows judges

to settle cases without discussion, even for large parent-child networks N . However, in practice typ-

ically only two or three parents are involved in a case, and thus court rulings often only apply to

parts of the parent-child network and not the entire network. Since a lawsuit for a subnetwork may

increase the unfairness in other parts of the network, this typically leads to a sequence of lawsuits,

each corresponding to different small subnetworks of the larger network N . From a societal point

of view it is desired that this sequence of lawsuits does not continue indefinitely, but (quickly) yields

the proportionally fair solution x̄ of the entire network. In this section we prove under very mild

conditions that the parental contributions indeed converge to the unique proportionally fair solution

x̄ of Theorem 1.

Before we prove the main convergence result of this section, we first give a definition of a lawsuit

and explain how it changes the parental contributions x.

DEFINITION 5. Consider an overage parent-child network N = (V ,E ,d,b). Then, we call N = (V ,E),

with V = P∪C, a subnetwork of N if N is connected and P ⊂P , C ⊂C , and E ⊂ E . We write N ⊂N ,

and only consider subnetworks N that contain at least two parents and a common child.
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DEFINITION 6. Consider an overage parent-child network N and let N ⊂ N be a subnetwork of

N . Then, a lawsuit LN : X → X on subnetwork N transforms the parental contributions x ∈ X

according to

LN(xi j)=
{

x̄i j(N, d̄(x), b̄), if (i, j) ∈ E,
xi j, if (i, j) ∉ E,

(8)

where b̄ denotes the financial needs of the children in N, and d̄ i(x) := d i −∑
j:(i, j)∈E \E xi j, i ∈ P, repre-

sents the financial capacity of parent i in subnetwork N when all current obligations to all children

not in N are subtracted. We call a lawsuit LN simple whenever the subnetwork N consists of only a

single child j ∈C and its parents P ( j). We let S denote the set of all simple lawsuits.

REMARK 2. Observe from Eq. (8) that a lawsuit LN only alters parental contributions xi j of parents

and children in the subnetwork N.

LEMMA 3. Let N be an overage parent-child network. Then,

(i) The lawsuit LN is continuous in x for every N ⊂N .

(ii) A lawsuit acts as a projection, i.e., (LN ◦LN)(x)= (LN)(x) for all x ∈X and N ⊂N .

(iii) Non-overlapping lawsuits can be interchanged, i.e., (LN1 ◦LN2)(x)= (LN2 ◦LN1)(x) for all x ∈X

and N1, N2 ⊂N with N1 ∩N2 =;.

Proof. The lawsuit LN is continuous for N ⊂N if and only if the proportionally fair solution x̄ is

continuous in d. The latter is true since T is continuous in y and d, and thus by the implicit function

theorem, any fixed point ȳ of T is continuous in d. It then follows directly from (6) that x̄ is also

continuous in d, proving (i).

To prove (ii) and (iii), observe that d̄(x) is determined by parental contributions xi j of parents i ∈ P

and children j ∈C \C. Moreover, lawsuit LN only adjusts parental contributions xi j of parents i ∈ P

and children j ∈ C. Thus, d̄(x) = d̄(LN(x)) for all x ∈X , and it follows directly from the definition of

LN that (ii) holds. Moreover, if N1 and N2 are disjoint, then for all x ∈X we have dN1(x)= dN1(LN2(x))

and dN2(x)= dN2(LN1(x)), and thus (iii) also holds. □
Property (ii) in Lemma 3 shows that repeating the same lawsuit directly does not change the

parental contributions. Moreover, Lemma 3 (iii) implies that when two lawsuits have no parents or

children in common, then the order of the lawsuits does not matter.

The following proposition shows that the proportionally fair solution x̄ is the only solution x ∈ X

that is unaltered by all simple lawsuits LN on N .

PROPOSITION 3. Consider an overage parent-child network N . Then, LN(x) = x for all simple law-

suits LN ∈S if and only if x = x̄.
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Proof. ‘⇐’ Obviously, if x = x̄, then LN(x)= x for all LN ∈S .

‘⇒’ Let x ∈X be given such that LN(x) = x for all LN ∈S . We will show that x satisfies the propor-

tionality conditions from Proposition 1 so that x = x̄. To see this, consider child j ∈C and its parents

P ( j). Since they correspond to a simple lawsuit LN ∈S and since LN(x) = x, it holds that for every

two parents i,k ∈ P( j) of child j, we have xi j
Bi j (x) =

xk j
Bk j (x) = δ j. □

Proposition 3 provides a stopping criterion for when nobody is better off by starting a simple case.

At the same time, it shows that only in the proportionally fair solution this is true. In fact, this result

does not only hold for simple cases, but lawsuits that involve subnetworks of N of any size.

DEFINITION 7. We call a collection of subnetworks {N1, . . . , NK } of N a network cover of N if every

network N associated to a simple lawsuits is a subset of Nk for at least one k = 1, . . . ,K .

Note that, in particular, the set S of all simple lawsuits yields a network cover.

COROLLARY 1. Consider an overage parent-child network N , and let {N1, . . . , NK } be a network cover

of N . Then, LNk (x)= x for all k = 1, . . . ,K , if and only if x = x̄.

Proof. Analogous to Proposition 3. □
To prove that a sequence of parental contributions {xn}∞n=0 ⊂ X with xn := LNn (xn−1), converges to

the proportionally fair solution x̄ for a sequence of lawsuits {LNn }∞n=1, we use a so-called fairness

function F : X → R. This function will act as a Lyapunov function in the sense that F(LN(x)) > F(x)

if LN(x) ̸= x. That is, the fairness increases after a relevant lawsuit. Part of Moulin and Sethuraman

(2013, Eq 5) provides the function we need.

DEFINITION 8. Consider an overage parent-child network N . We define the fairness function F :

X →R of N as

F(x)= ∑
i∈P

∑
j∈C (i)

Ln
(
xi j

)+ ∑
i∈P

Ln (Oi(x)) , x ∈X , (9)

where Ln :R+ →R is defined as Ln(y)= y− y log(y) with the convention Ln(0)= 0.

LEMMA 4. The fairness function F satisfies the following properties.

(i) The function F is strictly concave.

(ii) The function F is bounded on X .

(iii) The proportionally fair solution x̄ is the unique global maximizer of F.

Proof. See Moulin and Sethuraman (2013).

Next, we show that the fairness function strictly increases after any regular lawsuit.

DEFINITION 9. For every x ∈X and N ⊂N we call a lawsuit LN a regular lawsuit, if LN(x) ̸= x.

PROPOSITION 4. Consider an overage parent-child network N , and let x ∈ X be given. Then,

F(LN(x))> F(x) if LN is a regular lawsuit, and F(LN(x))= F(x), otherwise.
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Proof. If a lawsuit LN is not regular, then LN(x)= x, and thus F(LN(x))= F(x). A regular lawsuit

LN , on the other hand, only alters the parental contributions xi j of parents i ∈ P and children j ∈
C(i), and thus we can rewrite the difference F(LN(x))−F(x) as G(LN(x))−G(x) with

G(x)=∑
i∈P

∑
j∈C(i)

Ln
(
xi j

)+∑
i∈P

Ln

(
d i −

∑
j∈C (i)\C(i)

xi j −
∑

j∈C(i)
xi j

)
, x ∈X . (10)

Here,
∑

j∈C (i)\C(i) LN(x)i j = ∑
j∈C (i)\C(i) xi j for all i ∈ P since LN(x)i j = xi j for all j ∉ C(i). Interestingly,

the function G corresponds to the fairness function FN̂ of the smaller network N̂ = (N,dN(x),bN).

Moreover, LN(x) restricted to N corresponds to the proportionally fair solution x̄(N̂ ) of N̂ . Since by

Lemma 4 (iii), x̄(N̂ ) is the unique global maximizer of FN̂ , and since the lawsuit LN is regular, it

follows that G(LN(x))−G(x)> 0, and thus F(LN(x))> F(x) if LN(x) ̸= x. □
Before we prove the convergence of {xn}∞n=0, we first need some mild assumptions on the sequence

of lawsuits {LNn }∞n=1. For example, if we only repeat the same lawsuit, i.e., if LNn =LN for all n ∈N,

then xn = LN(x0) for all n ∈N by Lemma 3, and this sequence does not necessarily converge to the

proportionally fair solution x̄. Similarly, if Nn does not contain parent i ∈P for all n ∈N, then xn
i j = x0

i j

for all j ∈C (i), and again the proportionally solutions may not be achieved. To exclude these trivial

cases, we only consider admissible sequences of lawsuits, defined as follows.

DEFINITION 10. Consider an overage parent-child network N . A covering pattern is a fixed and

finite sequence Π = (N̂1, N̂2, . . . , N̂K ) of sets N̂i ⊂ N such that {N̂i : i ≤ K} is a network cover. A

sequence {LNn }∞n=1 of lawsuits is admissible when it contains a covering pattern Π infinitely often.

Now we are ready to prove that under very mild assumptions the sequence {xn}∞n=0 ⊂X with xn =
LNn (xn−1), converges to x̄ when cases {LNn }∞n=1 are iteratively settled.

THEOREM 2. Consider an overage parent-child network N , and let {LNn }∞n=1 and x0 ∈X be given. If

the sequence {LNn }∞n=1 of lawsuits is admissible, then the sequence of parental contributions {xn}∞n=0 ⊂
X , defined by xn =LNn (xn−1) for every n ∈N, converges to the proportionally fair solution x̄.

Proof. Consider the sequence {F(xn)}∞n=0 ⊂ R. Since by Proposition 4 it holds that F(L (x)) ≥ F(x)

for all x ∈X and N ⊂N , it follows that the sequence {F(xn)}∞n=0 is non-decreasing, i.e., F(xn)≥ F(xn−1)

for all n ∈N. Moreover, since F(xn) is bounded from above by F(x̄), see Lemma 4 (iii), it follows that

F(xn) converges to some limit L ≤ F(x̄).

Next, we will construct a subsequence of {xn}∞n=0 that converges to x̄. For this purpose, let the

subsequence {xnl }∞l=0 be such that xnl is an element of {xn}∞n=0 that appears just before the first case N̂1

of some occurrence of the covering pattern Π. Such a subsequence exists since {LNn }∞n=1 is admissible,

and thus the pattern Π occurs infinitely often. Moreover, since the sequence {xnl }∞l=0 ⊂ X is defined

on a compact space, it has a converging subsequence by the theorem of Bolzano-Weierstrass. Hence,
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without loss of generality we assume that the elements of {xnl }∞l=0 are selected such that {xnl }∞l=0 is

converging, and we call the limit x̂. Using the subsequence {xnl }∞l=0 we construct a second subsequence

{zl}∞l=0 of {xn}∞n=0, by defining zl =LN̂K
◦· · ·◦LN̂1(xnl ) for l = 0, . . . ,∞. That is, zl is the element of {xn}∞n=0

after the pattern Π is applied to xnl . Moreover, since LN̂K
◦· · ·◦LN̂1 is continuous by Lemma 3 (i), the

subsequence {zl}∞l=0 converges to a limit called ẑ for which

ẑ := lim
l→∞

zl = lim
l→∞

LN̂K
◦ · · · ◦LN̂1(xnl )=LN̂K

◦ · · · ◦LN̂1(x̂). (11)

Now, since {xnl }∞l=0 and {zl}∞l=0 are subsequences of {xn}∞n=0, it follows that F(x̂)= F(ẑ)= L. Since F is

continuous, and using Eq. (11), we have

F(x̂)= F(ẑ)= F((LN̂K
◦ · · · ◦LN̂1)(x̂)).

This equality shows that the fairness of x̂ ∈ X does not improve by applying cases LN̂1 , . . . ,LN̂k

to x̂. Since the pattern Π is a network cover, it follows from Corollary 1 that ẑ = x̂ = x̄. Moreover,

L = F(x̂)= F(x̄).

It remains to prove that {xn}∞n=0 converges to x̄. Suppose that this is not the case. Then, there exists

ϵ > 0 such that for infinitely many n ∈ N, we have ∥xn − x̄∥ ≥ ϵ. However, on {x ∈ X : ∥x− x̄∥ ≥ ϵ},

the fairness function F has a global maximum Fϵ < F(x̄). This means that infinitely many often,

F(xn)≤ Fϵ < F(x̄), contradicting that F(xn)→ F(x̄). Hence, {xn}∞n=0 converges to x̄. □
The next corollary is an immediate consequence of Theorem 2.

COROLLARY 2. Consider an overage parent-child network N , and let x0 ∈X be given. Suppose that

a rule π selects each element N̂i of a network cover with positive probability as the nth lawsuit of

a sequence of lawsuits {LNn }∞n=1 for every n ∈ N. Then, the sequence of parental contributions {xn}∞n=0

obtained under π converges to the proportionally fair solution x̄ almost surely.

Proof. The randomized policy π produces the covering patternΠ= (N̂1, . . . , N̂K ) with positive prob-

ability, and thus this covering pattern almost surely occurs infinitely often in a sequence of lawsuits.

Such sequences being admissible, the convergence of {xn}∞n=0 follows directly from Theorem 2. □
Theorem 2 and Corollary 2 show that the parental contributions based on a sequence of lawsuits on

subnetworks of the larger parent-child network converges to the proportionally fair solution x̄ of the

complete parent-child network under very mild assumptions. This result is not only desirable from

a societal point of view, but also provide us with a very simple and elegant procedure for computing

the proportionally fair solution to a given parent-child network: just iteratively apply the effect of

lawsuits on smaller subnetworks. In particular, we propose to apply simple lawsuits only, since these

are easy to understand and the proportionally fair solution can be determined analytically for these

simple lawsuits, see, e.g., Example 1.

Algorithm 2: Iteratively apply simple lawsuits.
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1. Initialization. Let overage parent-child network N = (V ,E ,d,b) and initial parental contribu-

tions x0 ∈X be given. Let ϵ> 0 denote the tolerance level and set n := 0.

2. Iteration. Select a child ȷ̄ ∈C and apply the effects of the simple lawsuit LN ∈S corresponding

to child ȷ̄. That is, update the parental contributions according to

xn+1
i j =

 Bi j(xn)
b j∑

k∈P( j) Bk j(xn)
, if j = ȷ̄ and i ∈P ( ȷ̄),

xn
i j, otherwise.

Update the iteration counter, set n := n+1.

3. Termination. Stop if max
i∈P , j∈C ( j)

|LN(xn)i j − xn
i j| < ϵ, for all LN ∈S .

In Section 6, we compare several alternatives of Algorithm 2 that differ in the order in which sim-

ple lawsuits are carried out, including randomly selecting simple lawsuits and repeatedly applying

the simple lawsuit with the largest impact. First, however, we revisit the actual court case from

Example 3 to illustrate the effectiveness of iteratively applying simple lawsuits.

EXAMPLE 4 (EXAMPLE 3 REVISITED). Consider the case from Example 3 with the actual court rul-

ings as presented in Table 1. We iteratively apply a few simple lawsuits to the solution provided by

court and compare the result with the proportionally fair solution x̄, also given in Table 1. In fact, in

Fig. 2 we show the differences between the overages of the parents for the current solution and those

of the proportionally fair solution. To obtain these differences, first the simple lawsuit corresponding

to child AC is carried out, and next the ones corresponding to CD, EF, and AB, in this order. We

observe from Fig. 2 that the large differences between the current solution and the proportionally

fair solution disappear fast after only a few simple lawsuits.

6. Numerical experiments

In this section we compare various methods to compute the proportionally fair solution x̄ of a parent-

child overage network N . All computations are carried out on a desktop computer with i7 core and

16GB internal memory using Python 3.10.

6.1. Experimental design

We consider several different methods to compute the proportionally fair solution x̄. The first is a

benchmark method, referred to as CO, in which we use convex optimization to maximize the fair-

ness function F from Definition 8 under the max-flow constraints
∑

i∈P ( j) xi j = b j for all j ∈ C . In

particular, we use the state-of-the-art ECOS solver of the CVXPY library (Diamond and Boyd 2016,

Agrawal et al. 2018). The second method is the fixed-point iteration algorithm (FPA) described in

Algorithm 1, and finally we consider four versions of Algorithm 2 that differ in how simple law-

suits are iteratively selected. In the first, called IT Random, we select simple lawsuits randomly
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Figure 2 The differences in parental overages compared to O(x̄) in Example 3 after several simple lawsuits.
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with equal probability. In the second, called IT Wave, we carry out the |S | simple lawsuits in a

pre-determined order, and then immediately afterwards in reverse order. This process is repeated

with the same fixed order of |S | simple lawsuits. In the third version of Algorithm 2, called IT Best

Update, we iteratively apply the simple lawsuit LN ∈ S with the largest impact in parental con-

tribution, i.e., argmaxLN∈S {|LN(x))− x|}. The fourth method is motivated by the fact that it may be

computationally expensive to determine the simple lawsuit LN with the largest impact. Hence, in

the final method, called IT Sorted Update, we first sort all |S | simple lawsuits based on their impact,

and then carry out all lawsuits in this order, before computing their impact again and resorting the

simple lawsuits. Table 2 summarizes these solution methods.

Table 2 A description of the solution methods that we use in our numerical experiments.

Abbreviation Description
CO Convex optimization method that maximizes the fairness function F over X .
FPA The fixed-point iteration algorithm of Theorem 1.
IT Random Algorithm 2 with simple lawsuits randomly selected with equal probability.
IT Wave Algorithm 2 in which simple lawsuits are applied in a fixed order and reversed.
IT Best Update Algorithm 2 with simple lawsuits with the largest impact iteratively applied.
IT Sorted Update Algorithm 2 where simple lawsuits are sorted on impact and then applied.

We note that we use a different stopping criterion for the FPA and the four IT methods than

described in Algorithms 1 and 2, to be able to better compare these methods. We let M := F(x̄FPA)

denote the value of the fairness function F for the parental contributions x̄FPA obtained by Algo-

rithm 1 with tolerance level ϵ = 10−2. Next, we run both FPA and the IT methods, until (M −
F(xn))/|M| ≤ 10−5, and we use the same relative tolerance level of 10−5 for CO.

However, since it is computationally expensive to compute F(xn), we only check the termination

criterion in the FPA when maxi{yn
i }/maxi{yn−1

i } ≤ 1+ 10−6. Similarly, for IT Random and IT Wave

we check the termination criterion only after every 2|S | simple lawsuits, and for IT Sorted Update

after |S | simple lawsuits. In contrast, for IT Best Update the value of F(xn) is known after every

iteration since F(LN(xn)) needs to be computed for all simple cases LN , to determine the simple case

with the largest impact. Interestingly, for this algorithm the value of the fairness function F(xn+1)

can be updated after a simple lawsuit without computing the sum over all parental contributions

xn+1 and parental overages O(xn+1). Specifically, suppose there is a simple lawsuit between parents

corresponding to child j. Then, the increase in fairness ∆F := F(xn+1)−F(xn) is given by

∆F = ∑
i∈P ( j)

(
Ln xn+1

i j +LnOi(xn+1)−Ln xn
i j −LnOi(xn)

)
.

We apply these methods to three classes of randomly generated instances with different topologies.

Namely, networks with topologies that are randomly generated, and networks with both a small and



20

large diameter, called star networks and linear networks, respectively, see Fig. 3. Here, the diameter

of a parent-child network is defined as the length of the largest shortest path between any two

parents in the undirected version of N . Below we describe in more detail how all instances are

generated.

P3 P4P2

C2 C3C1

P1

Figure 3 Two examples of parent-child networks with parents represented as squares and children as circles. The left

graph is an example of a linear network with 4 parents and 3 children; the right of a star network with

9 parents and 8 children. In the star network, parent 0 is in the middle and child i = 1, . . . ,8, receives an

allowance from parent 0 and parent i, respectively.

Star networks have one parent in the middle, called parent 0, which is connected to all other

parents i = 1, . . . , |P |−1, via a common child also labeled as i, for all i ∈C . Hence, each child i ∈C has

two parents: parent 0 and parent i. In linear networks, on the other hand, each parent i = 2, . . . |P |−1

has two children, conveniently called i−1 and i, and each child i ∈C has two parents, namely i and

i+1. Parents 1 and |P | both only have a single child, namely child 1 and |P |−1, respectively. See

Fig. 3 for an example of a linear network and a star network. Finally, the third class of networks

has a randomly generated topology. We start with a linear network with |P | parents and |P | −1

children to ensure that the network is connected. Then, for every parent i ∈ P we randomly select

ζi children from C , with ζi discrete uniformly distributed on {0,1, . . . ,6}, and we make parent i

financially responsible for these ζi children and those dictated by the linear network if not already

selected.

For every type of network, we let b j be independently and uniformly distributed on [0.5,1.5] for

every j ∈ C . Next, the financial capacities d of the parents are determined as follows. For every

i ∈P , let d i equal to

d i = ξi

∑
j∈C (i)

b j

|P ( j)| ,

where ξi is uniformly distributed on the interval (1,5). Note that the parameters are selected in such

a way that we always obtain an overage network. Moreover, note that when ξi = 1 for all i ∈P , then

the total capacities of the parents equal the total needs of the children.
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6.2. Numerical results

We generate networks of various sizes |P |. For every type of network and size, we randomly generate

10 different problem instances and we apply the solution methods summarized in Table 2 to these

instances. For each solution method, we report the mean running time and, if applicable, the mean

number of iterations over these problem instances.

Table 3 Average running times in milliseconds for the solution methods from Table 2 for small parent-child networks.

In between brackets the average number of iterations for the FPA and the average number of simple lawsuits carried out

for the IT methods are reported. The running time of fastest algorithm per network is indicated with bold face. We report

OOT if a solution method exceeds 5 minutes on at least one instance.

Size Network FPA IT Wave IT Random IT Sorted IT Best CO
10 star 2 (9) 1 (45) 2 (88) 2 (30) 6 (24) 80
10 linear 2 (6) 1 (43) 1 (72) 1 (28) 5 (21) 81
10 random 2 (5) 2 (43) 2 (83) 2 (29) 8 (25) 66
30 star 4 (12) 4 (157) 7 (290) 5 (102) 37 (71) 762
30 linear 3 (7) 2 (157) 4 (273) 4 (104) 26 (69) 725
30 random 3 (5) 4 (162) 7 (278) 6 (87) 50 (78) 707
100 star 12 (14) 101 (5128) 30 (1049) 33 (634) 522 (246) 13402
100 linear 8 (9) 7 (594) 10 (1049) 9 (337) 180 (230) 13383
100 random 9 (6) 12 (554) 19 (1129) 14 (317) 383 (266) 12888
300 star 38 (18) 2227 (49335) 160 (3349) 290 (2990) 10777 (750) OOT
300 linear 18 (8) 14 (1794) 28 (3648) 24 (1196) 1542 (710) OOT
300 random 19 (5) 29 (1794) 52 (3528) 37 (897) 3562 (801) OOT

Table 3 shows the running times (in milliseconds) of the solution methods for relatively small

networks of size |P | = 10,30,100, and 300 parents, respectively. If a method exceeds 5 minutes on

at least one of these instances then we report “out of time (OOT)”. It is clear from Table 3 that

the method CO is about one or two orders of magnitude slower than the other methods. For |P | =
300, CO is even out of time, exceeding 5 minutes, whereas some of the other methods finish in

milliseconds. We note that all running times reported in Table 3 are ‘wall clock times’, even though

for CO we could distinguish between setup time and solving time. We do not make this distinction to

keep a fair comparison between all methods since the other methods do not have setup and solving

times. Moreover, for completeness we should mention that CO is compiled C++ code, whereas the

other algorithms run in pure Python. Thus, it should be clear from Table 3 that CO is significantly

outperformed by both FPA and the IT methods. This is not surprising since CO is a general-purpose

convex optimization solver, whereas the other methods are tailor-made for the DPP.

What may be surprising is that the method IT Best Update also performs poor, with running times

much larger than FPA and the other IT methods. This can be explained by the fact that it takes

too much time searching for the simple lawsuit with the largest impact. Indeed, as can be seen in
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Table 3, the actual number of simple lawsuits that are carried out is substantially smaller for IT

Best Update than for the other IT methods. However, for every simple lawsuit carried out we also

investigate the impact of |P |−2 alternative ones, which explains the large running times.

The running times of the method IT Sorted Update, however, are substantially smaller than those

of IT Best Update since in this method we only compute the impact of each simple lawsuit after

applying |S | of them. In this way, we carry out slightly more actual lawsuits but need less time

to identify which simple lawsuits are promising ones. Compared with IT Wave and IT Random we

indeed require less simple lawsuits, however, in terms of running time IT Sorted Update does not

clearly outperform these methods. We conclude that any numerical effort invested in computing the

impact of a simple lawsuit is better invested in actually carrying out the lawsuit. This is in line with

Proposition 4 since the fairness, measured by F, always increases for any regular lawsuit.

Another interesting observation from Table 3 is that the performance of the methods depends on

the topology of the network. For example, the IT Wave algorithm performs well for linear networks

since we carry out simple lawsuits in a fixed predetermined order, in our case from child 1 to |P |−1

and next from |P | −1 back to 1, i.e., ‘from left to right’ and next ‘from right to left’ in the linear

network, so that changes in parental contributions are propagated efficiently through the network.

For random and star networks, however, this order of simple lawsuits is not necessarily the best,

explaining why IT Random is better on those networks whereas IT Wave is best on linear networks.

Moreover, note that all methods require more time for solving star networks than linear or random

networks.

Overall, we conclude that FPA is fastest. It outperforms all IT methods on all types of network

except for IT Wave on linear networks. This is according to expectation since the IT Wave algorithm

is targeted at linear networks, whereas FPA cannot benefit from any special topology of the graph.

The general superior performance of FPA cannot directly be explained by the number of iterations

reported in Table 3 since an iteration in FPA requires computations for all parents and children in

the network, whereas an iteration in the IT methods corresponds to a simple lawsuit and thus only

requires computation for a single child and its parents. Nevertheless, the number of iterations for

FPA seems to grow less fast than the number of simple lawsuits required for the IT methods.

For practical purposes, i.e., for computing the proportionally fair solution for an actual court case

in which typically much less than 300 parents are involved, IT Wave, IT Random, and IT Sorted

Update will be very efficient and run within a second. They have the advantage that they are easy

to understand, and thus will be more easily accepted by parents, lawyers, and judges.

For applications of the general bipartite rationing problems other than the DPP, we recommend

FPA since it is the fastest and scales favorably as a function of the size of the problem. This is

confirmed in Fig. 4, from which we observe that the running times of FPA scale approximately
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linearly in the number of parents. This is because the number of iterations required by FPA remains

small whereas the time required for carrying out a single iterations scales linearly in the size of the

network. Fig. 4 shows that we can solve bipartite rationing problems with up to 105 nodes in less

than a minute.
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Figure 4 Running times (left) and number of iterations (right) for the FPA on large random networks. In the left graph

both axes are on a log scale; in the right graph only the horizontal one. Each cross represents the result of a

single instance; we ran 20 instances for each network size.

7. Summary and discussion

We consider the divorced-parents problem (DPP), in which divorced parents have to cover the finan-

cial needs of the children for which they are financially responsible. We derive mathematical proper-

ties that uniquely define proportionally fair parental contributions, also for complex cases involving

children from previous marriages and parents remarrying parents that already have children. We

show that the DPP can be represented as a general bipartite rationing problem, and design fast

and efficient algorithms to compute the proportionally fair parental contributions. In addition, since

lawsuits are often held between two or a few parents, even if the number of ex-partners involved is

larger, we prove that iteratively applying such smaller lawsuits eventually leads to the same pro-

portionally fair parental contributions as a single lawsuit with all relevant parents involved.

Numerical experiments show that our newly developed algorithms outperform standard convex

optimization methods for the DPP, and thus also for the general bipartite rationing problem. In

particular, the fixed point iteration algorithm FPA from Algorithm 1 is capable of solving large

problem instances with hundred thousand nodes within less than a minute. Moreover, we show that

it is also possible to efficiently compute the proportionally fair parental contributions for the DPP
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by iteratively applying so-called simple lawsuits, involving only a single child and all its parents.

This result has an important off-spin with regard to the acceptance of the solution in practice, since

each such simple lawsuit can be computed by hand, and hence is easy to understand by parents,

legal counselors, and judges. Therefore, rather than having to rely on a ‘black-box’ method such as a

convex optimization solver, the solution results from a repetition of simple numerical steps.

Finally, our method has the potential for significant practical impact. Besides being insightful,

it provides a unique solution to any dispute, thereby removing the legal inequality perceived by

parents. Moreover, it can considerably reduce the workload of courts, mediators, and lawyers, since

when parents agree on the parental responsibilities, parental capacities and children needs they can

use our algorithms to compute the unique solution without intervention of the court.
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